Sasol isomerized paraffinic kerosene (IPK) is a coal-derived synthetic fuel under consideration as a blending stock with jet propellant 8 (JP-8) for use in military equipment. However, Sasol IPK is a low ignition quality fuel with derived cetane number (DCN) of 31. The proper use of such alternative fuels in internal combustion engines (ICEs) requires the modification in control strategies to operate engines efficiently. With computational cycle simulation coupled with surrogate fuel mechanism, the engine development process is proved to be very effective. Therefore, a methodology to formulate Sasol IPK surrogate fuels for diesel engine application using ignition quality tester (IQT) is developed. An in-house developed matlab code is used to formulate the appropriate mixture blends, also known as surrogate fuel. And aspen hysys is used to emulate the distillation curve of the surrogate fuels. The properties of the surrogate fuels are compared to those of the target Sasol IPK fuel. The DCNs of surrogate fuels are measured in the IQT and compared with the target Sasol IPK fuel at the standard condition. Furthermore, the ignition delay, combustion gas pressure, and rate of heat release (RHR) of Sasol IPK and its formulated surrogate fuels are analyzed and compared at five different charge temperatures. In addition, the apparent activation energies derived from chemical ignition delay of the surrogate fuel and Sasol IPK are determined and compared.

References

References
1.
Schihl
,
P.
, and
Hoogterp-Decker
,
L.
,
2011
, “
On the Ignition Behavior of JP-8 in Military Relevant Diesel Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1
13
.
2.
Jayakumar
,
C.
,
Zheng
,
Z.
,
Joshi
,
U. M.
,
Bryzik
,
W.
,
Henein
,
N. A.
, and
Sattler
,
E.
,
2011
, “
Effect of Inlet Temperature on Auto-Ignition of Fuels With Different Cetane Number and Volatility
,”
ASME
Paper No. ICEF2011-60141.
3.
Frame
,
E. A.
,
Alvarez
,
R. A.
,
Blanks
,
M. G.
,
Freerks
,
R. L.
,
Stavinoha
,
L.
,
Muzzell
,
P. A.
, and
Villahermosa
,
L.
,
2004
, “
Alternative Fuels: Assessment of Fischer–Tropsch Fuel for Military Use in 6.5L Diesel Engine
,”
SAE
Technical Paper No. 2004-01-2961.
4.
Schihl
,
P.
,
Hoogterp
,
L.
, and
Gingrich
,
E.
,
2012
, “
The Ignition Behavior of a Coal to Liquid Fischer–Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine
,”
SAE
Technical Paper No. 2012-01-1197.
5.
Acharya
,
K.
,
Dahodwala
,
M.
,
Bryzik
,
W.
,
Henein
,
N.
, and Sova, N.,
2009
, “
Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine
,”
SAE
Technical Paper No. 2009-01-0489.
6.
Jing
,
W.
,
Wu
,
Z.
,
Zhang
,
W.
, and
Fang
,
T.
,
2015
, “
Measurements of Soot Temperature and KL Factor for Spray Combustion of Biomass Derived Renewable Fuels
,”
Energy
,
91
, pp.
758
771
.
7.
Liu
,
H.
,
Wang
,
Z.
, and
Wang
,
J.
,
2014
, “
Methanol-Gasoline DFSI (Dual-Fuel Spark Ignition) Combustion With Dual-Injection for Engine Knock Suppression
,”
Energy
,
73
, pp.
686
693
.
8.
Wang
,
Z.
,
Liu
,
H.
,
Long
,
Y.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Comparative Study on Alcohols–Gasoline and Gasoline–Alcohols Dual-Fuel Spark Ignition (DFSI) Combustion for High Load Extension and High Fuel Efficiency
,”
Energy
,
89
, pp.
1010
1017
.
9.
Lenhert
,
D.
,
2004
, “
The Oxidation of JP-8 and Its Surrogates in the Low and Intermediate Temperature Regime
,” Ph.D. dissertation, Drexel University, Philadelphia, PA.
10.
Agosta
,
A.
,
2002
, “
Development of a Chemical Surrogate for JP-8 Aviation Fuel in Pressurized Flow Reactor
,” Master thesis, Drexel University, Philadelphia, PA.
11.
Huber
,
M. L.
,
Lemmon
,
E. W.
, and
Bruno
,
T. J.
,
2010
, “
Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A
,”
Energy Fuels
,
24
(
6
), pp.
3565
3571
.
12.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Granata
,
S.
,
Faravaelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
171
(
11
), pp.
399
417
.
13.
Cemansky
,
N. P.
, and
Miller
,
D. L.
,
2006
, “
The Low Temperature Oxidation Chemistry of JP-8 and Its Surrogates at High Pressure
,” Final Progress Report No. DAAD19-03-1-0070.
14.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.
15.
Dooley
,
S.
,
Won
,
S.
,
Heyne
,
J.
,
Farouka
,
T.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Hui
,
X.
,
Sung
,
C.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Iyer
,
V.
,
Iyer
,
S.
,
Litzingerd
,
T. A.
,
Santoro
,
R. J.
,
Malwicki
,
T.
, and
Brezinsky
,
K.
,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.
16.
Dooley
,
S.
,
Won
,
S.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.
17.
Dooley
,
S.
,
Dryer
,
F.
,
Farouk
,
T. I.
,
Ju
,
Y.
, and
Won
,
S.
,
2013
, “
Reduced Kinetic Models for the Combustion of Jet Propulsion Fuels
,”
AIAA
Paper No. 2013-0158.
18.
Won
,
S.
,
Veloo
,
P. S.
,
Santner
,
J.
,
Ju
,
Y.
, and
Dryer
,
F.
,
2013
, “
Comparative Evaluation of Global Combustion Properties of Alternative Jet Fuels
,”
AIAA
Paper No. 2013-0156.
19.
Dryer
,
F.
,
Ju
,
Y.
,
Brezinsky
,
K.
,
Santoro
,
R.
,
Litzinger
,
T. A.
, and
Sung
,
C.
,
2012
, “Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels,” 2007 MURI Topic: Science-Based Design of Fuel-Flexible Chemical Propulsion/Energy, Air Force Office of Scientific Research (AFOSR), Wright-Patterson Air Force Base, OH, Final Progress Report No.
FA9550-07-7-0515
.
20.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet A and the n-Dodecane/Iso-Octane/n-Propylbenzene/1,3,5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.
21.
Naik
,
C.
,
Puduppakkam
,
K.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y.
,
Feng
,
Q.
, and
Tsotsis
,
T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels
,”
Combust. Flame
,
158
(
3
), pp.
434
445
.
22.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(3), pp.
835
847
.
23.
Mzé-Ahmed
,
A.
,
Dagaut
,
P.
,
Hadj-Ali
,
K.
, and
Dayma
,
G.
,
2012
, “
Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study
,”
Energy Fuel
,
26
(
10
), pp.
6070
6079
.
24.
Mzé-Ahmed
,
A.
,
Hadj-Ali
,
K.
,
Diévart
,
P.
, and
Dagaut
,
P.
,
2010
, “
Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study
,”
Energy Fuels
,
24
(
9
), pp.
4904
4911
.
25.
Huber
,
M. L.
,
Smith
,
B. L.
,
Ott
,
L. S.
, and
Bruno
,
T. J.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.
26.
Zheng
,
Z.
,
Lee
,
P.
,
Shrestha
,
A.
,
Badawy
,
T.
, Lai, M., Henein, N., and Sattler, E.,
2014
, “
Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
116
130
.
27.
ASTM
,
2010
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. ASTM D6890-10a.
28.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N. A.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061501
.
29.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N. A.
,
Sattler
,
E.
, and
Johnson
,
N.
,
2013
, “
Effect of Cetane Improver on Autoignition Characteristics of Low Cetane Sasol IPK Using Ignition Quality Tester
,”
ASME
Paper No. ICEF2013-19061.
30.
Aradi
,
A. A.
, and
Ryan
,
T. W.
,
1995
, “
Cetane Effect on Diesel Ignition Delay Times Measured in a Constant Volume Combustion Apparatus
,”
SAE
Technical Paper No. 952352.
31.
Bogin
,
G.
,
Osecky
,
E.
,
Ratcliff
,
M. A.
,
Luecke
,
J.
,
He
,
X.
,
Zigler
,
B.
, and
Dean
,
A. M.
,
2013
, “
Ignition Quality Tester (IQT) Investigation of the Negative Temperature Coefficient Region of Alkane Autoignition
,”
Energy and Fuels
,
27
(
3
), pp.
1632
1642
.
32.
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
Autoignition Studies of Conventional and Fischer–Tropsch Jet Fuels
,”
Fuel
,
98
, pp.
249
258
.
33.
Calcote
,
H. F.
, and
Manos
,
D. M.
,
1983
, “
Effect of Molecular Structure on Incipient Soot Formation
,”
Combust. Flame
,
49
(1–3), pp.
289
304
.
34.
Colket
,
M.
,
Edwards
,
T.
,
Williams
,
S.
,
Cernansky
,
N. P.
, Miller, D., Egolfopoulos, F., Lindstedt, P., Seshadri, K., Dryer, F., Law, C., Friend, D., Lenhert, D., Pitsch, H., Sarofim, A., Smooke, M., and Tsang, W.,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels
,”
AIAA
Paper No. 2007-0770.
35.
The CRECK Modeling Group, 2012, “Kinetic Mechanisms,” The CRECK Modeling Group, Milan, Italy, accessed Jan. 2013, http://creckmodeling.chem.polimi.it/
36.
National Institute of Standards and Technology, 2016, NIST Chemistry Book, Gaithersburg, MD, NIST Standard Reference Database Number 69, accessed July 2013, http://webbook.nist.gov/chemistry/
37.
Thermal-Fluids Central, 2011, “Heat of Combustion,” Thermal-Fluids Central, Columbia, MO, accessed Aug. 2013, http://www.thermalfluidscentral.org/encyclopedia/index.php/Heat_of_Combustion#Heating_Value
38.
Shrestha
,
A.
,
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N. A.
, and Schihl, P.,
2014
, “
Development of JP-8 Surrogates and Their Validation Using Ignition Quality Tester
,”
SAE J. Fuel Lubr.
,
7
(
1
), pp.
337
351
.
39.
Won
,
S.
,
Veloo
,
P. S.
,
Santner
,
J.
,
Ju
,
Y.
,
Dryer
,
F.
, and
Dooley
,
S.
,
2014
, “
Characterization of Global Combustion Properties With Simple Fuel Property Measurements for Alternative Jet Fuels
,”
AIAA
Paper No. 2014–2469.
40.
ASTM
, 2012, “
Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. ASTM D86-12.
41.
AspenONE Engineering Software,
1994
–2013, “
Aspen HYSYS V7.3, Computer Software
,” Aspen Technology, Inc, Bedford, MA.
42.
Zheng
,
Z.
,
2014
, “
Effect of Cetane Number And Volatility on Autoignition and Combustion of Alternative Fuels and Their Surrogates
,”
Ph.D. dissertation
, Wayne State University, Detroit, MI.
43.
Mueller
,
C
.,
2005
, “
The Quantification of Mixture Stoichiometry When Fuel Molecules Contain Oxidizer Elements or Oxidizer Molecules Contain Fuel Elements
,”
SAE
Technical Paper No. 2005-01-3705.
44.
Holley
,
A. T.
,
You
,
X. Q.
,
Dames
,
E.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
,
2009
, “
Sensitivity of Propagation and Extinction of Large Hydrocarbon Flames to Fuel Diffusion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1157
1163
.
45.
Burley
,
H. A.
, and
Rosebrock
,
T. L.
,
1979
, “
Automotive Diesel Engines-Fuel Composition Versus Particulates
,”
SAE
Paper No. 790923.
46.
Zannis
,
T.
,
Hountalas
,
D.
,
Papagiannakis
,
R.
, and
Levendis
,
Y.
,
2009
, “
Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
384
419
.
47.
Gill
,
S. S.
,
Tsolakis
,
A.
,
Dearn
,
K. D.
, and
Rodríguez-Fernández
,
J.
,
2011
, “
Combustion Characteristics and Emissions of Fischer–Tropsch Diesel Fuels in IC Engines
,”
Prog. Energy Combust. Sci.
,
37
(
4
), pp.
503
523
.
48.
Zheng
,
Z.
,
Joshi
,
U.
,
Henein
,
N.
, and
Sattler
,
E.
,
2015
, “
Effect of Cetane Improver on Combustion and Emission Characteristics of Coal-Derived Sasol Isomerized Paraffinic Kerosene in a Single Cylinder Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071506
.
49.
Henein
,
N. A.
, and
Bolt
,
J. A.
,
1969
, “
Correlation of Air Charge Temperature and Ignition Delay for Several Fuels in a Diesel Engine
,”
SAE
Technical Paper No. 690252.
50.
Henein
,
N.
,
1987
, “
Cetane Scale: Function, Problems and Possible Solutions
,”
SAE
Technical Paper No. 870584.
51.
Siebers
,
D.
,
1985
, “
Ignition Delay Characteristics of Alternative Diesel Fuels: Implications on Cetane Number
,”
SAE
Technical Paper No. 852102.
You do not currently have access to this content.