In large modern turbochargers, transonic compressors often constitute the main source of noise, with a frequency spectrum typically dominated by tonal noise at the blade passing frequency (BPF) and its harmonics. Inflow BPF noise is mainly generated by rotor locked shock fronts. Outflow noise, while also dominated by BPF tones, is linked to more complex source mechanisms. Its modal structure and the relationships between sources and modal sound pressure levels (SPL) are less well understood, and its numerical analysis is, in general, significantly more complex than for compressor inflows. To shed some light on the outflow acoustic characteristics of radial machines, transient simulations of a 360 deg model of a radial compressor stage, including its vaned diffuser and volute, were carried out. Four increasingly finer grids were used for this purpose. On all grids, numerical damping had detrimental effects on prediction quality. A simple and mathematically sound method is proposed to account for this damping. With it, the global outflow acoustic power level (PWLg) is predicted to within an accuracy of 2 dB of the experimental result on the finest grid. This shows that satisfactory accuracy can be obtained with state-of-the-art computational fluid dynamics (CFD) codes if care is taken with the simulation setup. The simulations are further validated with experimental data from 17 transient wall pressure sensors.

References

References
1.
Kajihara
,
S.
,
Takashima
,
K.
,
Hoejgaard
,
J.
, and
Roegild
,
M.
,
2010
, “
Noise Reductions for Low Speed Diesel Engines and Application of Noise Measurement Using Spherical Beamforming Technique
,” 26th CIMAC World Congress on Combustion, Bergen, Norway, June 14–17, Paper No. 114.
2.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
.
3.
Feld
,
H.-J.
,
Aschenbrenner
,
S.
, and
Girsberger
,
R.
,
2001
, “
Investigation of Acoustic Phenomena at the Inlet and the Outlet of a Centrifugal Compressor for Pressure Ratio 4.5
,”
ASME
Paper No. 2001-GT-0314.
4.
Velarde-Suárez
,
S.
,
Ballesteros-Tajadura
,
R.
,
Hurtado-Cruz
,
J. P.
, and
Santaloria-Morros
,
C.
,
2006
, “
Experimental Determination of the Tonal Noise Sources in a Centrifugal Fan
,”
J. Sound Vib.
,
295
(
3–5
), pp.
781
796
.
5.
Paramasivam
,
K.
,
Rajoo
,
S.
, and
Romagnoli
,
A.
,
2015
, “
Reduction of Tonal Noise in a Centrifugal Fan Using Guide Vanes
,” The 10th European Congress and Exposition on Noise Control Engineering (
EuroNoise
), Maastricht, The Netherlands, May 31–June 3, pp.
2279
2284
.
6.
Ohta
,
Y.
,
Goto
,
T.
,
Tsukioka
,
Y.
, and
Outa
,
E.
,
2007
, “
Effects of Tapered Diffuser Vane on the Flow Field and Noise of a Centrifugal Compressor
,”
8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows
(
ISAIF8
), Lyon, France, July 2–5, Paper No. ISAIF8-005.
7.
Ohta
,
Y.
,
Goto
,
T.
,
Tsukioka
,
Y.
, and
Outa
,
E.
,
2007
, “
Effects of Tapered Diffuser Vane on the Flow Field and Noise of a Centrifugal Compressor
,”
J. Therm. Sci.
,
16
(
4
), pp.
301
308
.
8.
Ohta
,
Y.
,
Goto
,
T.
, and
Outa
,
W.
,
2010
, “
Unsteady Behavior and Control of Diffuser Leading-Edge Vortex in a Centrifugal Compressor
,”
ASME
Paper No. GT2010-22394.
9.
Habing
,
R.
, and
Feld
,
H.-J.
,
2013
, “
On the Modal Sound Field at the Outlet of a Turbocharger Centrifugal Compressor
,” 10th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (
ETC
), Lappeenranta, Finland, Apr. 15–19, Paper No. ETC2013-007.
10.
Dawes
,
W. N.
,
1995
, “
A Simulation of the Unsteady Interaction of a Centrifugal Impeller With Its Vaned Diffuser: Flow Analysis
,”
ASME J. Turbomach.
,
117
(
2
), pp.
213
222
.
11.
Shum
,
Y.
,
Tan
,
C.
, and
Cumpsty
,
N.
,
2000
, “
Impeller–Diffuser Interaction in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
122
(
4
), pp.
777
786
.
12.
Dickmann
,
H.-P.
,
Wimmel
,
T. S.
,
Szwedowicz
,
J.
,
Filsinger
,
D.
, and
Roduner
,
C.
,
2005
, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: Three-Dimensional Computational Fluid Dynamics Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration
,”
ASME J. Turbomach.
,
128
(
3
), pp.
455
465
.
13.
Dickmann
,
H.-P.
,
Wimmel
,
T. S.
,
Szwedowicz
,
S.
,
Kühnel
,
J.
, and
Essig
,
U.
,
2009
, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: 3D-CFD Simulation, Impeller Blade Vibration and Vaned Diffuser-Volute Interaction
,”
ASME
Paper No. GT2009-59046.
14.
Meakhail
,
T.
, and
Park
,
S. O.
,
2005
, “
A Study of Impeller–Diffuser–Volute Interaction in a Centrifugal Fan
,”
ASME J. Turbomach.
,
127
(
1
), pp.
84
90
.
15.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2012
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffusers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
16.
Robinson
,
C.
,
Casey
,
M.
,
Hutchinson
,
B.
, and
Steed
,
R.
,
2012
, “
Impeller–Diffuser Interaction in Centrifugal Compressors
,”
ASME
Paper No. GT2012-69151.
17.
Wilkosz
,
B.
,
Zimmermann
,
M.
,
Schwarz
,
P.
,
Jeschke
,
P.
, and
Smythe
,
C.
,
2013
, “
Numerical Investigation of the Unsteady Interaction Within a Close-Coupled Centrifugal Compressor Used in an Aero Engine
,”
ASME J. Turbomach.
,
136
(
4
), p.
041006
.
18.
Marsan
,
A.
,
Trébinjac
,
I.
,
Coste
,
S.
, and
Leroy
,
G.
,
2014
, “
Influence of Unsteadiness on the Control of a Hub-Corner Separation Within a Radial Vaned Diffuser
,”
ASME J. Turbomach.
,
137
(
2
), p.
021008
.
19.
Benichou
,
E.
, and
Trébinjac
,
I.
,
2016
, “
Comparison of Steady and Unsteady Flows in a Transonic Radial Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121002
.
20.
Sun
,
H.
,
Shin
,
H.
, and
Lee
,
S.
,
2006
, “
Analysis and Optimization of Aerodynamic Noise in a Centrifugal Compressor
,”
J. Sound Vib.
,
289
(
4–5
), pp.
999
1018
.
21.
Banica
,
M. C.
,
Fischer
,
M.
,
Feld
,
H.-J.
,
Habing
,
R.
, and
Spinder
,
C.
,
2014
, “
Numerical Analysis of the Tonal Sound Pressure Level Distribution in the Vaned Diffuser of a Centrifugal Compressor
,”
AIAA
Paper No. 2014-3116.
22.
Giles
,
M.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
23.
Banica
,
M. C.
,
Limacher
,
P.
, and
Feld
,
H.-J.
,
2016
, “
Analysis of the Sources and the Modal Content of the Acoustic Field in a Radial Compressor Outflow
,”
ASME
Paper No. GT2016-57405.
24.
Tyler
,
J.
, and
Sofrin
,
T.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Technical Paper No. 620532.
25.
Roger
,
M.
,
2004
, “
Analytical Modeling of Wake-Interaction Noise in Centrifugal Compressors With Vaned Diffusers
,”
AIAA
Paper No. 2004-2994.
26.
Roger
,
M.
,
Moreau
,
S.
, and
Marsan
,
A.
,
2014
, “
Generation and Transmission of Spiral Acoustic Waves in Multi-Stage Subsonic Radial Compressors
,”
AIAA
Paper No. 2014-3232.
27.
Limacher
,
P.
,
Spinder
,
C.
,
Banica
,
M. C.
, and
Feld
,
H.-J.
,
2017
, “
A Robust Industrial Procedure for Measuring Modal Sound Fields in the Development of Radial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062604
.
28.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
,
Concepts NREC
, White River Junction, VT.
29.
Michalke
,
A.
,
1989
, “
On the Propagation of Sound Generated in a Pipe of Circular Cross-Section With Uniform Mean Flow
,”
J. Sound Vib.
,
134
(
2
), pp.
203
234
.
30.
ANSYS
,
2016
, “
ANSYS CFX Release 17.0 Documentation
,” ANSYS, Canonsburg, PA.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
32.
Vieser
,
W.
,
Esch
,
T.
,
Menter
,
F.
, and
Smirnov
,
P.
, 2002, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,” ANSYS CFX Validation Report, ANSYS, Inc., Canonsburg, PA, Report No. CFX-VAL10/0602.
33.
Hirsch
,
C.
,
2007
,
The Fundamentals of Computational Fluid Dynamics—Numerical Computation of Internal and External Flows
,
2nd ed.
, Vol.
1
,
Elsevier
, Oxford, UK.
34.
Colonius
,
T.
, and
Lele
,
S. K.
,
2004
, “
Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation
,”
Prog. Aerosp. Sci.
,
40
(
6
), pp.
345
416
.
35.
Casey
,
M.
, and
Rusch
,
D.
,
2012
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME
Paper No. GT2012-68105.
36.
Kousen
,
K. A.
,
1999
, “
Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components
,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA/CR-1999-208881
.
37.
Lighthill
,
M. J.
,
1952
, “
On Sound generated Aerodynamically. I. General Theory
,”
Proc. R. Soc. London, Ser. A
,
211
(
1107
), pp.
564
587
.
38.
Davis
,
H. G.
, and
Ffowcs Williams
,
J. E.
,
1968
, “
Aerodynamic Sound Generation in a Pipe
,”
J. Fluid Mech.
,
32
(
4
), pp.
765
778
.
39.
Taylor
,
K. A.
,
1978
, “
A Transformation of the Acoustic Equation With Implications for Wind-Tunnel and Low-Speed Flight Tests
,”
Proc. R. Soc. London, Ser. A
,
363
(
1713
), pp.
271
281
.
40.
Dowling
,
A. P.
, and
Ffowcs Williams
,
J. E.
,
1982
,
Sound and Sources of Sound
,
Ellis Horwood
, Chichester, UK.
41.
Bruce
,
P. J. K.
,
Babinsky
,
H.
,
Tartinville
,
B.
, and
Hirsch
,
C.
,
2011
, “
Experimental and Numerical Study of Oscillating Transonic Shock Waves in Ducts
,”
AIAA J.
,
49
(
8
), pp.
1710
1720
.
42.
Morgan
,
B.
,
Duraisamy
,
K.
,
Nguyen
,
N.
,
Kawai
,
S.
, and
Lele
,
S. K.
,
2013
, “
Flow Physics and RANS Modelling of Oblique Shock/Turbulent Boundary Layer Interaction
,”
J. Fluid Mech.
,
729
, pp.
231
284
.
43.
Atassi
,
O. V.
,
2003
, “
Computing the Sound Power in Non-Uniform Flow
,”
J. Sound Vib.
,
266
(
1
), pp.
75
92
.
44.
Golubev
,
V. V.
, and
Atassi
,
H. M.
,
1996
, “
Sound Propagation in an Annular Duct With Mean Potential Swirling Flow
,”
J. Sound Vib.
,
198
(
5
), pp.
601
616
.
45.
Amiet
,
R. K.
,
1976
, “
High Frequency Thin-Airfoil Theory for Subsonic Flow
,”
AIAA J.
,
14
(
8
), pp.
1076
1082
.
46.
Gill
,
J.
,
Zhang
,
X.
, and
Joseph
,
P.
,
2013
, “
Symmetric Airfoil Geometry Effects on Leading Edge Noise
,”
J. Acoust. Soc. Am.
,
134
(
4
), pp.
2669
2680
.
47.
Envia
,
E.
,
Wilson
,
A. G.
, and
Huff
,
D. L.
,
2004
, “
Fan Noise: A Challenge to CAA
,”
Int. J. Comput. Fluid Dyn.
,
18
(
6
), pp.
471
480
.
48.
Paterson
,
R. W.
,
Vogt
,
P. G.
,
Fink
,
M. R.
, and
Munch
,
C. L.
,
1973
, “
Vortex Noise of Isolated Airfoils
,”
J. Aircr.
,
10
(
5
), pp.
296
302
.
You do not currently have access to this content.