In this work, we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment-based accuracy rating method for species profiles. The concept is used for a necessity-based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for computational fluid dynamics application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.

References

References
1.
Seidel
,
L.
,
Moshammer
,
K.
,
Wang
,
X.
,
Zeuch
,
T.
,
Kohse-Höinghaus
,
K.
, and
Mauss
,
F.
,
2015
, “
Comprehensive Kinetic Modeling and Experimental Study of a Fuel-Rich, Premixed n-Heptane Flame
,”
Combust. Flame
,
162
(
5
), pp.
2045
2058
.
2.
Pasternak
,
M.
,
Mauss
,
F.
,
Perlman
,
C.
, and
Lehtiniemi
,
H.
,
2014
, “
Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1517
1535
.
3.
Matrisciano
,
A.
,
Pasternak
,
M.
,
Wang
,
X.
,
Antoshkiv
,
O.
,
Mauss
,
F.
, and
Berg
,
P.
,
2014
, “
On the Performance of Biodiesel Blends—Experimental Data and Simulations Using a Stochastic Fuel Test Bench
,”
SAE
Technical Paper No. 2014-02-1115.
4.
Perlman
,
C.
,
Frojd
,
K.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2012
, “
A Fast Tool for Predictive IC Engine In-Cylinder Modelling With Detailed Chemistry
,”
SAE
Technical Paper No. 2012-01-1074.
5.
LOGE
,
2015
, “
LOGEsoft v1.06
,” Lund Combustion Engineering Loge AB, Lund, Sweden.
6.
Pope
,
S.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
7.
LOGE
,
2015
, “
LOGEengine v1.04
,” Lund Combustion Engineering Loge AB, Lund, Sweden.
8.
Pasternak
,
M.
,
Mauss
,
F.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2012
, “
Self-Calibrating Model for Diesel Engine Simulations
,”
SAE
Technical Paper No. 2012-01-1072.
9.
CONVERGE
,
2014
, “
CONVERGE 2.2.0 Theory Manual
,” Convergent Science, Madison, WI.
10.
Lehtiniemi
,
H.
,
Zhang
,
Y.
,
Rawat
,
R.
, and
Mauss
,
F.
,
2008
, “
Efficient 3-D CFD Combustion Modeling With Transient Flamelet Models
,”
SAE
Technical Paper No. 2008-01-0957.
11.
Ahmed
,
S. S.
,
Mauss
,
F.
,
Moréac
,
G.
, and
Zeuch
,
T.
,
2007
, “
A Comprehensive and Compact n-Heptane Oxidation Model Derived Using Chemical Lumping
,”
Phys. Chem. Chem. Phys.
,
9
(
9
), pp.
1107
1126
.
12.
Hoyermann
,
K.
,
Mauss
,
F.
, and
Zeuch
,
T.
,
2004
, “
A Detailed Chemical Reaction Mechanism for the Oxidation of Hydrocarbons and Its Application to the Analysis of Benzene Formation in Fuel-Rich Premixed Laminar Acetylene and Propene Flames
,”
Phys. Chem. Chem. Phys.
,
6
(
14
), pp.
3824
3835
.
13.
Oßwald
,
P.
,
Kohse-Höinghaus
,
K.
,
Struckmeier
,
U.
,
Zeuch
,
T.
,
Seidel
,
L.
,
Leon
,
L.
, and
Mauss
,
F.
,
2011
, “
Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames
,”
Z. Phys. Chem.
,
225
(
9–10
), pp.
1029
1054
.
14.
Schenk
,
M.
,
Leon
,
L.
,
Moshammer
,
K.
,
Oßwald
,
P.
,
Zeuch
,
T.
,
Seidel
,
L.
,
Mauss
,
F.
, and
Kohse-Höinghaus
,
K.
,
2013
, “
Detailed Mass Spectrometric and Modeling Study of Isomeric Butene Flames
,”
Combust. Flame
,
160
(
3
), pp.
487
506
.
15.
Davis
,
S.
, and
Law
,
C.
,
1998
, “
Laminar Flame Speeds and Oxidation Kinetics of Iso-Octane-Air and n-Heptane-Air Flames
,”
Symp. Combust.
,
27
(
1
), pp.
521
527
.
16.
Sileghem
,
L.
,
Alekseev
,
V.
,
Vancoillie
,
J.
,
Nilsson
,
E.
,
Verhelst
,
S.
, and
Konnov
,
A.
,
2014
, “
Laminar Burning Velocities of Primary Reference Fuels and Simple Alcohols
,”
Fuel
,
115
, pp.
32
40
.
17.
Kumar
,
K.
,
Freeh
,
J.
,
Sung
,
C.
, and
Huang
,
Y.
,
2007
, “
Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
J. Propul. Power
,
23
(
2
), pp.
428
436
.
18.
Huang
,
Y.
,
Sung
,
C.
, and
Eng
,
J.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.
19.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiotdesjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.
20.
Ciezki
,
H.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
21.
Heufer
,
K.
, and
Olivier
,
H.
,
2010
, “
Determination of Ignition Delay Times of Different Hydrocarbons in a New High Pressure Shock Tube
,”
Shock Waves
,
20
(
4
), pp.
307
316
.
22.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
23.
Zeuch
,
T.
,
Moréac
,
G.
,
Ahmed
,
S. S.
, and
Mauss
,
F.
,
2008
, “
A Comprehensive Skeletal Mechanism for the Oxidation of n-Heptane Generated by Chemistry-Guided Reduction
,”
Combust. Flame
,
155
(
4
), pp.
651
674
.
24.
Soyhan
,
H.
,
Mauss
,
F.
, and
Sorusbay
,
C.
,
2002
, “
Chemical Kinetic Modeling of Combustion in Internal Combustion Engines Using Reduced Chemistry
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
73
91
.
25.
Løvås
,
T.
,
Amnéus
,
P.
,
Mauss
,
F.
, and
Mastorakos
,
E.
,
2002
, “
Comparison of Automatic Reduction Procedures for Ignition Chemistry
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1387
1393
.
26.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
27.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
28.
Olm
,
C.
,
Zsély
,
I. G.
,
Varga
,
T.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2015
, “
Comparison of the Performance of Several Recent Syngas Combustion Mechanisms
,”
Combust. Flame
,
162
(
5
), pp.
1793
1812
.
29.
Stagni
,
A.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2016
, “
Skeletal Mechanism Reduction Through Species-Targeted Sensitivity Analysis
,”
Combust. Flame
,
163
, pp.
382
393
.
You do not currently have access to this content.