The largest share of electricity production worldwide belongs to steam turbines. However, the increase of renewable energy production has led steam turbines to operate under part load conditions and increase in size. As a consequence, long rotor blades will generate a relative supersonic flow field at the inlet of the last rotor. This paper presents a unique experiment work that focuses at the top 30% of stator exit in the last stage of an low pressure (LP) steam turbine test facility with coarse droplets and high wetness mass fraction under different operating conditions. The measurements were performed with two novel fast response probes: a fast response probe for three-dimensional flow field wet steam measurements and an optical backscatter probe for coarse water droplet measurements ranging from 30 μm up to 110 μm in diameter. This study has shown that the attached bow shock at the rotor leading edge is the main source of interblade row interactions between the stator and rotor of the last stage. In addition, the measurements showed that coarse droplets are present in the entire stator pitch with larger droplets located at the vicinity of the stator's suction side. Unsteady droplet measurements showed that the coarse water droplets are modulated with the downstream rotor blade-passing period. This set of time-resolved data will be used for in-house computational fluid dynamics (CFD) code development and validation.

References

References
1.
Haraguchi
,
M.
,
Nakamura
,
T.
,
Yoda
,
H.
,
Kudo
,
T.
, and
Senoo
,
S.
,
2013
, “
Nuclear Steam Turbine With 60 Inch Last Stage Blade
,”
ASME
Paper No. ICONE21-16600.
2.
Shibukawa
,
N.
,
Iwasaki
,
Y.
,
Takada
,
Y.
,
Murakami
,
I.
,
Suzuki
,
T.
, and
Fukushima
,
T.
,
2014
, “
An Experimental Investigation of the Influence of Flash-Back Flow on Last Three Stages of Low Pressure Steam Turbines
,”
ASME
Paper No. GT2014-26897.
3.
Senoo
,
S.
,
2012
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines: Part 1—Overall Configuration
,”
ASME
Paper No. GT2012-68218.
4.
Havakechian
,
S.
, and
Denton
,
J.
,
2015
, “
Three-Dimensional Blade-Stacking Strategies and Understanding of Flow Physics in Low-Pressure Steam Turbines—Part I: Three-Dimensional Stacking Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052603
.
5.
Crane
,
R. I.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
8
), pp.
859
870
.
6.
Senoo
,
S.
, and
Ono
,
H.
,
2013
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines: Part 2—Configuration Details and Validation
,”
ASME
Paper No. GT2013-94039.
7.
Gerschütz
,
W.
,
Casey
,
M.
, and
Truckenmüller
,
F.
,
2005
, “
Experimental Investigations of Rotating Flow Instabilities in the Last Stage of a Low-Pressure Model Steam Turbine During Windage
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
499
510
.
8.
Segawa
,
K.
,
Senoo
,
S.
,
Kudo
,
T.
,
Nakamura
,
T.
, and
Shibashita
,
N.
,
2012
, “
Steady and Unsteady Flow Measurements Under Low Load Conditions in a Low Pressure Model Steam Turbine
,”
ASME
Paper No. ICONE20-POWER2012-54862.
9.
Miyake
,
S.
,
Koda
,
I.
,
Yamamoto
,
S.
,
Sasao
,
Y.
,
Momma
,
K.
,
Miyawaki
,
T.
, and
Ooyama
,
H.
,
2014
, “
Unsteady Wake and Vortex Interactions in 3-D Steam Turbine Low Pressure Final Three Stages
,”
ASME
Paper No. GT2014-25491.
10.
Kleitz
,
A.
, and
Dorey
,
J. M.
,
2004
, “
Instrumentation for Wet Steam
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
8
), pp.
811
842
.
11.
Walters
,
P.
, and
Skingley
,
P.
,
1979
, “
An Optical Instrument for Measuring the Wetness Fraction and Droplet Size of Wet Steam Flows in LP Turbines
,”
Proc. Inst. Mech. Eng., Part C
,
141
(
79
), pp.
337
348
.
12.
Walters
,
P. T.
,
1987
, “
Wetness and Efficiency Measurements in L.P. Turbines With an Optical Probe as an Aid to Improving Performance
,”
ASME J. Eng. Gas Turbines Power
,
109
(
1
), pp.
85
91
.
13.
Tatsuno
,
K.
, and
Nagao
,
S.
,
1986
, “
Water Droplet Size Measurements in an Experimental Steam Turbine Using an Optical Fiber Droplet Sizer
,”
ASME J. Heat Transfer
,
108
(
4
), pp.
939
945
.
14.
Cai
,
X.
,
Ning
,
T.
,
Niu
,
F.
,
Wu
,
G.
, and
Song
,
Y.
,
2009
, “
Investigation of Wet Steam Flow in a 300 MW Direct Air-Cooling Steam Turbine. Part 1: Measurement Principles, Probe, and Wetness
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
5
), pp.
625
634
.
15.
Young
,
J. B.
, and
Yeoh
,
C. C.
,
1984
, “
The Effect of Droplet Size on the Flow in the Last Stage of a One-Third Scale Model Low-Pressure Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
198
(
13
), pp.
309
316
.
16.
Schatz
,
M.
, and
Casey
,
M.
,
2007
, “
Design and Testing of a New Miniature Combined Optical/Pneumatic Wedge Probe for the Measurement of Steam Wetness
,”
AIP Conf. Proc.
,
914
(
1
), pp.
464
479
.
17.
Cai
,
X.
,
Ning
,
D.
,
Yu
,
J.
,
Li
,
J.
,
Ma
,
L.
,
Tian
,
C.
, and
Gao
,
W.
,
2014
, “
Coarse Water in Low-Pressure Steam Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
153
167
.
18.
Fan
,
X.
,
Jia
,
Z.
,
Zhang
,
J.
, and
Cai
,
X.
,
2009
, “
A Video Probe Measurement System for Coarse Water Droplets in LP Steam Turbine
,”
J. Phys.: Conf. Ser.
,
147
(
1
), p.
012065
.
19.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
, and
Senoo
,
S.
,
2015
, “
Unsteady Wet Steam Flow Field Measurements in the Last Stage of Low Pressure Steam Turbine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032601
.
20.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2016
, “
An Optical Backscatter Probe for Time Resolved Droplet Measurements in Turbomachines
,”
Meas. Sci. Technol.
,
27
(
1
), p.
015204
.
21.
Duan
,
C.
,
Ishibashi
,
K.
,
Senoo
,
S.
,
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2016
, “
Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine
,”
Int. J. Fluid Mach. Sys.
,
9
(1), pp. 85–94.
22.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2016
, “
A Fast Response Miniature Probe for Wet Steam Flow Field Measurements
,”
Meas. Sci. Technol.
,
27
(12), p. 125901.
23.
Rollinger
,
B.
,
Morris
,
O.
, and
Abhari
,
R. S.
,
2011
, “
Stable Tin Droplets for LPP EUV Sources
,”
Proc. SPIE
,
7969
, p.
79692W
.
24.
Moore
,
M. J.
, and
Sieverding
,
C. H.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators: Theory–Instrumentation–Engineering
,
Hemisphere
,
Washington, DC
.
25.
Christie
,
D. G.
,
Hayward
,
G. W.
,
Lowe
,
H. J.
,
MacDonald
,
A. N.
, and
Sculpher
,
P.
,
1965
, “
The Formation of Water Drops Which Cause Turbine Blade Erosion
,”
Proc. Inst. Mech. Eng.
,
180
(
15
), pp.
13
22
.
26.
Li
,
C.
,
Wang
,
X.
,
Cheng
,
D.
, and
Sun
,
B.
,
2008
, “
Experimental Study on Effects of Slot Hot Blowing on Secondary Water Droplet Size and Water Film Thickness
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p. 033001.
27.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.
You do not currently have access to this content.