This paper presents an experimental procedure developed to simulate the behavior of ceramic matrix composites (CMCs) under the cyclic thermal stresses of a gas turbine combustion chamber. An experimental apparatus was assembled that produces a temperature gradient across the thickness of a CMC specimen while holding the specimen at its two extremities, which simulates the bending stress that would be observed at the center of a combustor panel. Preliminary validation tests were performed in which A-N720 oxide–oxide CMC specimens were heated to a surface temperature of up to 1160 °C using an infrared heater, which allowed for the calibration of heat losses and material thermal conductivity. The specimen test conditions were compared with predicted conditions in generic annular combustor panels made of the same material. Provided that a more powerful heat source is made available to reach sufficiently high temperatures and through-thickness temperature gradients simultaneously, the proposed experiment promises to allow laboratory observation of representative deterioration modes of a CMC inside an actual combustion chamber.

References

References
1.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
513
519
.
2.
Jimenez
,
O.
,
Bagheri
,
H.
,
McClain
,
J.
,
Ridler
,
K.
, and
Bornemisza
,
T.
,
2003
, “
CSGT: Final Design and Test of a Ceramic Hot Section
,”
ASME
Paper No. GT2003-38978.
3.
Bhatia
,
T.
,
Jarmon
,
D.
,
Shi
,
J.
,
Kearney
,
S.
,
Kojovic
,
A.
,
Hu
,
J.
, and
Prociw
,
A.
,
2010
, “
CMC Combustor Liner Demonstration in a Small Helicopter Engine
,”
ASME
Paper No. GT2010-23810.
4.
Brewer
,
D.
,
Ojard
,
G.
, and
Gibler
,
M.
,
2000
, “
Ceramic Matrix Composite Combustor Liner Rig Test
,”
ASME
Paper No. 2000-GT-0670.
5.
Kimmel
,
J.
,
Price
,
J.
,
More
,
K.
,
Tortorelli
,
P.
,
Sun
,
E.
, and
Linsey
,
G.
,
2003
, “
The Evaluation of CFCC Liners After Field Testing in a Gas Turbine—IV
,”
ASME
Paper No. GT2003-38920.
6.
More
,
K. L.
,
Walker
,
L. R.
,
Wang
,
Y.
,
Lara-Curzio
,
E.
,
Brummett
,
T. M.
,
van Roode
,
M.
,
Price
,
J. R.
,
Szweda
,
A.
, and
Merrill
,
G.
,
2009
, “
Microstructural and Mechanical Characterization of a Hybrid Oxide CMC Combustor Liner After 25,000-Hour Engine Test
,”
ASME
Paper No. GT2009-59223.
7.
Kim
,
T. T.
,
Mall
,
S.
,
Zawada
,
L. P.
, and
Jefferson
,
G.
,
2010
, “
Simultaneous Fatigue and Combustion Exposure of a SiC/SiC Ceramic Matrix Composite
,”
J. Compos. Mater.
,
44
(
25
), pp.
2991
3016
.
8.
Mall
,
S.
, and
Ahn
,
J.-M.
,
2008
, “
Frequency Effects on Fatigue Behavior of Nextel720/Alumina at Room Temperature
,”
J. Eur. Ceram. Soc.
,
28
(
14
), pp.
2783
2789
.
9.
Ruggles-Wrenn
,
M. B.
, and
Braun
,
J. C.
,
2008
, “
Effects of Steam Environment on Creep Behavior of Nextel720/Alumina Ceramic Composite at Elevated Temperature
,”
Mater. Sci. Eng. A
,
497
(
1–2
), pp.
101
110
.
10.
Pujar
,
V. V.
, and
Morscher
,
G. N.
,
2007
, “
Tensile Creep Behavior of Melt-Infiltrated SiC-SiC Composites for Gas Turbine Engine Applications
,”
ASME
Paper No. GT2007-27491.
11.
Worthem
,
D. W.
,
1995
, “
Thermomechanical Fatigue Behavior of Three CFCC’s
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-CR-195441
.
12.
Ruggles-Wrenn
,
M. B.
, and
Hilburn
,
S. R.
,
2016
, “
Creep in Interlaminar Shear of an Oxide/Oxide Ceramic-Matrix Composite at Elevated Temperature
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p. 021401.
13.
Jackson
,
P. R.
,
Ruggles-Wrenn
,
M. B.
,
Baek
,
S. S.
, and
Keller
,
K. A.
,
2007
, “
Compressive Creep Behavior of an Oxide-Oxide Ceramic Composite With Monazite Fiber Coating at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
454–455
, pp.
590
601
.
14.
COIC
,
2016
, “
Oxide Ceramic Matrix Composites
,” COI Ceramics Inc., San Diego, CA, accessed Oct. 18, 2016, http://www.coiceramics.com/oxidepg.html
15.
Van Roode
,
M.
,
Bhattacharya
,
A.
, and
Ferber
,
M. K.
,
2009
, “
Durability Prediction of Alumina- and YAG-Based CMC Combustor Liners
,”
ASME
Paper No. GT2009-59690.
16.
MatWeb
,
2015
, “
Corundum, Aluminum Oxide, 99.9%
,” MatWeb, LLC, Blacksburg, VA, accessed Apr. 27, 2015, http://www.matweb.com/
17.
Ruggles-Wrenn
,
M. B.
, and
Laffey
,
P. D.
,
2008
, “
Creep Behavior in Interlaminar Shear of Nextel720/Alumina Ceramic Composite at Elevated Temperature in Air and in Steam
,”
Compos. Sci. Technol.
,
68
(
10–11
), pp.
2260
2266
.
18.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
19.
Hill
,
P. G.
, and
Peterson
,
C. R.
,
1992
,
Mechanics and Thermodynamics of Propulsion
,
Addison-Wesley
,
Reading, MA
.
20.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
21.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
84
90
.
22.
3M
,
2011
, “
Nextel Ceramic Textiles Technical Notebook
,” 3M Ceramic Textiles and Composites, St. Paul, MN, accessed Feb. 10, 2012, http://www.3m.com/market/industrial/ceramics/pdfs/Nextel_Tech_Notebook_11.04.pdf
You do not currently have access to this content.