Modern combustion chambers of gas turbines for power generation and aero-engines suffer of thermo-acoustic combustion instabilities generated by the coupling of heat release rate fluctuations with pressure oscillations. The present article reports a numerical analysis of limit cycles arising in a longitudinal combustor. This corresponds to experiments carried out on the longitudinal rig for instability analysis (LRIA) test facility equipped with a full-scale lean-premixed burner. Heat release rate fluctuations are modeled considering a distributed flame describing function (DFDF), since the flame under analysis is not compact with respect to the wavelengths of the unstable modes recorded experimentally. For each point of the flame, a saturation model is assumed for the gain and the phase of the DFDF with increasing amplitude of velocity fluctuations. A weakly nonlinear stability analysis is performed by combining the DFDF with a Helmholtz solver to determine the limit cycle condition. The numerical approach is used to study two configurations of the rig characterized by different lengths of the combustion chamber. In each configuration, a good match has been found between numerical predictions and experiments in terms of frequency and wave shape of the unstable mode. Time-resolved pressure fluctuations in the system plenum and chamber are reconstructed and compared with measurements. A suitable estimate of the limit cycle oscillation is found.

References

References
1.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
(
2
), pp.
17
46
.
2.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
,
2007
, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
,
150
(
1–2
), pp.
40
53
.
3.
Krediet
,
H. J.
,
Portillo
,
J.
,
Krebs
,
W.
, and
Kok
,
J.
,
2010
, “
Prediction of Thermoacoustic Limit Cycles During Premixed Combustion Using the Modified Galerkin Approach
,”
AIAA
Paper No. 2010-7150.
4.
Krebs
,
W.
,
Krediet
,
H.
,
Portillo
,
E.
,
Hermeth
,
S.
,
Poinsot
,
T.
,
Schimek
,
S.
, and
Paschereit
,
O.
,
2013
, “
Comparison of Nonlinear to Linear Thermoacoustic Stability Analysis of a Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081503
.
5.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
6.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.
7.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
8.
Cuquel
,
A.
,
Silva
,
C.
,
Nicoud
,
F.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Prediction of the Nonlinear Dynamics of a Multiple Flame Combustor by Coupling the Describing Function Methodology With a Helmholtz Solver
,”
ASME
Paper No. GT2013-95659.
9.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Experimental Study on the Effect of Swirler Geometry and Swirl Number on Flame Describing Functions
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
704
717
.
10.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
11.
Laera
,
D.
,
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051505
.
12.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.
13.
Campa
,
G.
,
Camporeale
,
S. M.
,
Cosatto
,
E.
, and
Mori
,
G.
,
2012
, “
Thermoacoustic Analysis of Combustion Instability Through a Distributed Flame Response Function
,”
ASME
Paper No. GT2012-68243.
14.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
91504
.
15.
Hummel
,
T.
,
Temmler
,
C.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2015
, “
Reduced-Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Noncompact Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051502
.
16.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.
17.
Jang
,
S.-H.
,
1998
, “
On the Multiple Microphone Method for Measuring In-Duct Acoustic Properties in the Presence of Mean Flow
,”
J. Acoust. Soc. Am.
,
103
(
3
), pp.
1520
1526
.
18.
Åbom
,
M.
, and
Bodén
,
H.
,
1988
, “
Error Analysis of Two-Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
,
83
(
6
), pp.
2429
2438
.
19.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Rofi
,
L.
,
Campa
,
G.
,
Anisimov
,
V.
,
Daccá
,
F.
,
Bertolotto
,
E.
,
Gottardo
,
E.
, and
Bonzani
,
F.
,
2015
, “
Numerical Procedure for the Investigation of Combustion Dynamics in Industrial Gas Turbines: LES, RANS and Thermoacoustics
,”
ASME
Paper No. GT2015-42168.
21.
Laera
,
D.
,
Gentile
,
A.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rofi
,
L.
, and
Bonzani
,
F.
,
2015
, “
Numerical and Experimental Investigation of Thermo-Acoustic Combustion Instability in a Longitudinal Combustion Chamber: Influence of the Geometry of the Plenum
,”
ASME
Paper No. GT2015-42322.
22.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
J. Acoust. Vib.
,
6
(
3
), pp.
135
146
.
23.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2010
, “
Influence of Flame and Burner Transfer Matrix on Thermoacoustic Combustion Instability Modes and Frequencies
,”
ASME
Paper No. GT2010-23104.
24.
Campa
,
G.
, and
Camporeale
,
S.
,
2012
, “
Eigenmode Analysis of the Thermoacoustic Combustion Instabilities Using a Hybrid Technique Based on the Finite Element Method and the Transfer Matrix Method
,”
Adv. Appl. Acoust.
,
1
(
1
), pp.
1
14
.
25.
Alemela
,
P. R.
,
Fanaca
,
D.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2008
, “
Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments
,”
ASME
Paper No. GT2008-50111.
26.
Laera
,
D.
,
Campa
,
G.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rizzo
,
S.
,
Bonzani
,
F.
,
Ferrante
,
A.
, and
Saponaro
,
A.
,
2014
, “
Modelling of Thermoacoustic Combustion Instabilities Phenomena: Application to an Experimental Test Rig
,”
Energy Procedia
,
45
, pp.
1392
1401
.
27.
Laera
,
D.
,
Campa
,
G.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rizzo
,
S.
,
Bonzani
,
F.
, and
Ferrante
,
A.
,
2014
, “
Modelling of Thermoacoustic Combustion Instabilities Phenomena: Application to an Experimental Rig for Testing Full Scale Burners
,”
ASME
Paper No. GT2014-25273.
28.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
29.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Anisimov
,
V.
,
Cirigliano
,
C.
, and
Poinsot
,
T.
,
2014
, “
Bistable Swirled Flames and Influence on Flame Transfer Functions
,”
Combust. Flame
,
161
(
1
), pp.
184
196
.
30.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
T.
Poinsot
and
D.
Veynante
, eds., R. T. Edwards, Philadelphia, PA.
31.
Dowling
,
A.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.
32.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,”
Progress in Astronautics and Aeronautics
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
33.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
.
34.
Gikadi
,
J.
,
Sattelmayer
,
T.
, and
Peschiulli
,
A.
,
2012
, “
Effects of the Mean Flow Field on the Thermo-Acoustic Stability of Aero-Engine Combustion Chambers
,”
ASME
Paper No. GT2012-69612.
35.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
36.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
(
1
), pp.
345
360
.
37.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2010
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
11506
.
38.
Laera
,
D.
,
2015
, “
Nonlinear Combustion Instabilities Analysis of Azimuthal Mode in Annular Chamber
,”
Energy Procedia
,
82
, pp.
921
928
.
39.
Munjal
,
M. L.
,
1987
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
,
Wiley
, New York.
40.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.
41.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.
42.
Balusamy
,
S.
,
Li
,
L. K.
,
Han
,
Z.
, and
Hochgreb
,
S.
,
2016
, “
Extracting Flame Describing Functions in the Presence of Self-Excited Thermoacoustic Oscillations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3851
3861
.
43.
Bourgouin
,
J.-F. F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2014
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
21503
.
44.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
45.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.
46.
Laera
,
D.
,
Campa
,
G.
, and
Camporeale
,
S. M.
,
2017
, “
A Finite Element Method for a Weakly Nonlinear Dynamic Analysis and Bifurcation Tracking of Thermo-Acoustic Instability in Longitudinal and Annular Combustors
,”
Appl. Energy
,
187
, pp.
216
227
.
You do not currently have access to this content.