The performance of a methane direct injection engine was investigated under various fuel injection timings and injection pressures. A single-cylinder optical engine was used to acquire in-cylinder pressure data and flame images. An outward-opening injector was installed at the center of the cylinder head. Experimental results showed that the combustion characteristics were strongly influenced by the end of injection (EOI) timing rather than the start of injection (SOI) timing. Late injection enhanced the combustion speed because the short duration between the end of injection and the spark-induced strong turbulence. The flame propagation speeds under various injection timings were directly compared using crank-angle-resolved sequential flame images. The injection pressure was not an important factor in the combustion; the three injection pressure cases of 0.5, 0.8, and 1.1 MPa yielded similar combustion trends. In the cases of late injection, the injection timings of which were near the intake valve closing (IVC) timing, the volumetric efficiency was higher (by 4%) than in the earlier injection cases. This result implies that the methane direct injection engine can achieve higher torque by means of the late injection strategy.

References

References
1.
Liu
,
Y.
,
Hwang
,
S. I.
,
Yeom
,
J. K.
, and
Chung
,
S. S.
,
2014
, “
Experimental Study on the Spray and Combustion Characteristics of SIDI CNG
,”
Int. J. Automot. Technol.
,
15
(
3
), pp.
353
359
.
2.
Kalam
,
M. A.
, and
Masjuki
,
H. H.
,
2011
, “
An Experimental Investigation of High Performance Natural Gas Engine With Direct Injection
,”
Energy
,
36
(
5
), pp.
3563
3571
.
3.
Papagiannakis
,
R. G.
,
Rakopoulos
,
C. D.
,
Hountalas
,
D. T.
, and
Rakopoulos
,
D. C.
,
2010
, “
Emission Characteristics of High Speed, Dual Fuel, Compression Ignition Engine Operating in a Wide Range of Natural Gas/Diesel Fuel Proportions
,”
Fuel
,
89
(
7
), pp.
1397
1406
.
4.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2016
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.
5.
Liu
,
Y.
,
Yeom
,
J.
, and
Chung
,
S.
,
2013
, “
A Study of Spray Development and Combustion Propagation Processes of Spark-Ignited Direct Injection (SIDI) Compressed Natural Gas (CNG)
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
228
244
.
6.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
Fuel
,
89
(
5
), pp.
1056
1063
.
7.
Maji
,
S.
,
Sharma
,
P. B.
, and
Babu
,
M. K. G.
,
2004
, “
A Comparative Study of Performance and Emission Characteristics of CNG and Gasoline on a Single Cylinder S. I. Engine
,”
SAE
Paper No. 2004-28-0038.
8.
Aslam
,
M. U.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Abdesselam
,
H.
,
Mahlia
,
T. M. I.
, and
Amalina
,
M. A.
,
2006
, “
An Experimental Investigation of CNG as an Alternative Fuel for a Retrofitted Gasoline Vehicle
,”
Fuel
,
85
(
5–6
), pp.
717
724
.
9.
Inaba
,
A.
, and
Okada
,
K.
,
1995
, “
Coal Utilization Technology for Reducing Carbon Dioxide Emission
,”
Coal Science and Technology
,
J. A.
Pajares
and
J. M. D.
Tascón
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1919
1922
.
10.
Mansurov
,
Z. A.
,
2005
, “
Soot Formation in Combustion Processes (Review)
,”
Combust., Explos. Shock Waves
,
41
(
6
), pp.
727
744
.
11.
Oh
,
C.
, and
Cha
,
G.
,
2015
, “
Impact of Fuel, Injection Type and After-Treatment System on Particulate Emissions of Light-Duty Vehicles Using Different Fuels on FTP-75 and HWFET Test Cycles
,”
Int. J. Automot. Technol.
,
16
(
6
), pp.
895
901
.
12.
Pischinger
,
S.
,
Umierski
,
M.
, and
Hüchtebrock
,
B.
,
2003
, “
New CNG Concepts for Passenger Cars: High Torque Engines With Superior Fuel Consumption
,”
SAE
Paper No. 2003-01-2264.
13.
Douailler
,
B.
,
Ravet
,
F.
,
Delpech
,
V.
,
Soleri
,
D.
,
Reveille
,
B.
, and
Kumar
,
R.
,
2011
, “
Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation
,”
SAE
Paper No. 2011-01-0923.
14.
Shamekhi
,
A.
,
Khatibzadeh
,
N.
, and
Shamekhi
,
A. H.
,
2006
, “
Performance and Emissions Characteristics Investigation of a Bi-Fuel SI Engine Fuelled by CNG and Gasoline
,”
ASME
Paper No. ICES2006-1387.
15.
Di Iorio
,
S.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2013
, “
Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine
,”
SAE
Paper No. 2013-24-0046.
16.
Catapano
,
F.
,
Di Iorio
,
S.
,
Magno
,
A.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2015
, “
A Comprehensive Analysis of the Effect of Ethanol, Methane and Methane-Hydrogen Blend on the Combustion Process in a PFI (Port Fuel Injection) Engine
,”
Energy
,
88
, pp.
101
110
.
17.
Movahed
,
M. M.
,
Tabrizi
,
H. B.
, and
Mirsalim
,
M.
,
2014
, “
Experimental Investigation of the Concomitant Injection of Gasoline and CNG in a Turbocharged Spark Ignition Engine
,”
Energy Convers. Manage.
,
80
, pp.
126
136
.
18.
Huang
,
Z.
,
Wang
,
J.
,
Liu
,
B.
,
Zeng
,
K.
,
Yu
,
J.
, and
Jiang
,
D.
,
2007
, “
Combustion Characteristics of a Direct-Injection Engine Fueled With Natural Gas–Hydrogen Blends Under Different Ignition Timings
,”
Fuel
,
86
(
3
), pp.
381
387
.
19.
Zeng
,
K.
,
Huang
,
Z.
,
Liu
,
B.
,
Liu
,
L.
,
Jiang
,
D.
,
Ren
,
Y.
, and
Wang
,
J.
,
2006
, “
Combustion Characteristics of a Direct-Injection Natural Gas Engine Under Various Fuel Injection Timings
,”
Appl. Therm. Eng.
,
26
(
8–9
), pp.
806
813
.
20.
Mohammed
,
S. E.
,
Baharom
,
M. B.
,
Aziz
,
A. R. A.
, and
Firmansyah
,
2011
, “
The Effects of Fuel-Injection Timing at Medium Injection Pressure on the Engine Characteristics and Emissions of a CNG-DI Engine Fueled by a Small Amount of Hydrogen in CNG
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11997
12006
.
21.
Wang
,
J.
,
Huang
,
Z.
,
Zheng
,
J.
, and
Miao
,
H.
,
2009
, “
Effect of Partially Premixed and Hydrogen Addition on Natural Gas Direct-Injection Lean Combustion
,”
Int. J. Hydrogen Energy
,
34
(
22
), pp.
9239
9247
.
22.
Shiga
,
S.
,
Ozone
,
S.
,
Machacon
,
H. T. C.
,
Karasawa
,
T.
,
Nakamura
,
H.
,
Ueda
,
T.
,
Jingu
,
N.
,
Huang
,
Z.
,
Tsue
,
M.
, and
Kono
,
M.
,
2002
, “
A Study of the Combustion and Emission Characteristics of Compressed-Natural-Gas Direct-Injection Stratified Combustion Using a Rapid-Compression-Machine
,”
Combust. Flame
,
129
(
1–2
), pp.
1
10
.
23.
Aleiferis
,
P. G.
,
Serras-Pereira
,
J.
, and
Richardson
,
D.
,
2013
, “
Characterisation of Flame Development With Ethanol, Butanol, Iso-Octane, Gasoline and Methane in a Direct-Injection Spark-Ignition Engine
,”
Fuel
,
109
, pp.
256
278
.
24.
Benajes
,
J.
,
Molina
,
S.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Durrett
,
R.
,
2014
, “
Conceptual Model Description of the Double Injection Strategy Applied to the Gasoline Partially Premixed Compression Ignition Combustion Concept With Spark Assistance
,”
Appl. Energy
,
129
, pp.
1
9
.
25.
Cheng
,
A. S.
,
Fisher
,
B. T.
,
Martin
,
G. C.
, and
Mueller
,
C. J.
,
2010
, “
Effects of Fuel Volatility on Early Direct-Injection, Low-Temperature Combustion in an Optical Diesel Engine
,”
Energy Fuels
,
24
(
3
), pp.
1538
1551
.
26.
Fansler
,
T. D.
,
Stojkovic
,
B.
,
Drake
,
M. C.
, and
Rosalik
,
M. E.
,
2002
, “
Local Fuel Concentration Measurements in Internal Combustion Engines Using Spark-Emission Spectroscopy
,”
Appl. Phys. B
,
75
(
4–5
), pp.
577
590
.
27.
Musculus
,
M. P. B.
, and
Pickett
,
L. M.
,
2005
, “
Diagnostic Considerations for Optical Laser-Extinction Measurements of Soot in High-Pressure Transient Combustion Environments
,”
Combust. Flame
,
141
(
4
), pp.
371
391
.
28.
Engel
,
S. R.
,
Koch
,
P.
,
Braeuer
,
A.
, and
Leipertz
,
A.
,
2009
, “
Simultaneous Laser-Induced Fluorescence and Raman Imaging Inside a Hydrogen Engine
,”
Appl. Opt.
,
48
(
35
), pp.
6643
6650
.
29.
Beretta
,
G. P.
,
Rashidi
,
M.
, and
Keck
,
J. C.
,
1983
, “
Turbulent Flame Propagation and Combustion in Spark Ignition Engines
,”
Combust. Flame
,
52
, pp.
217
245
.
30.
Stevens
,
E.
, and
Steeper
,
R.
,
2001
, “
Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation
,”
SAE
Technical Paper No. 2001-01-203.
31.
Sjöberg
,
M.
, and
Reuss
,
D.
,
2012
, “
NOx-Reduction by Injection-Timing Retard in a Stratified-Charge DISI Engine Using Gasoline and E85
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1096
1113
.
32.
Sjöberg
,
M.
, and
Reuss
,
D. L.
,
2013
, “
High-Speed Imaging of Spray-Guided DISI Engine Combustion With Near-TDC Injection of E85 for Ultra-Low NO and Soot
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2933
2940
.
33.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvements to KIVA-3V
,” Los Alamos National Laboratory, Los Alamos, NM,
Report No. LA-UR-99-915
.
34.
Yakhot
,
V.
, and
Orszag
,
S.
,
1986
, “
Renormalization Group Analysis of Turbulence I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
35.
Hessel
,
R. P.
,
Abani
,
N.
,
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2006
, “
Gaseous Fuel Injection Modeling Using a Gaseous Sphere Injection Methodology
,”
SAE
Paper No. 2006-01-3265.
36.
Choi
,
M.
,
Lee
,
S.
, and
Park
,
S.
,
2015
, “
Numerical and Experimental Study of Gaseous Fuel Injection for CNG Direct Injection
,”
Fuel
,
140
, pp.
693
700
.
37.
Choi
,
M.
,
Song
,
J.
, and
Park
,
S.
,
2016
, “
Modeling of the Fuel Injection and Combustion Process in a CNG Direct Injection Engine
,”
Fuel
,
179
, pp.
168
178
.
38.
Stephen
,
R. T.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
39.
Liu
,
K.
,
Fu
,
J.
,
Deng
,
B.
,
Yang
,
J.
,
Tang
,
Q.
, and
Liu
,
J.
,
2014
, “
The Influences of Pressure and Temperature on Laminar Flame Propagations of n-Butanol, Iso-Octane and Their Blends
,”
Energy
,
73
, pp.
703
715
.
40.
Song
,
J.
,
Kim
,
T.
,
Jang
,
J.
, and
Park
,
S.
,
2015
, “
Effects of the Injection Strategy on the Mixture Formation and Combustion Characteristics in a DISI (Direct Injection Spark Ignition) Optical Engine
,”
Energy
,
93
(
Part 2
), pp.
1758
1768
.
41.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines: A Literature Survey
,”
SAE
Paper No. 940987.
42.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T. W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model SparkCIMM. Part A: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
.
43.
Sjerić
,
M.
,
Kozarac
,
D.
, and
Ormuž
,
K.
,
2016
, “
Cycle-Simulation Turbulence Modelling of IC Engines
,”
Int. J. Automot. Technol.
,
17
(
1
), pp.
51
61
.
44.
Breaux
,
B.
,
Hoops
,
C.
, and
Glewen
,
W.
,
2016
, “
The Effect of In-Cylinder Turbulence on Lean, Premixed, Spark-Ignited Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081504
.
45.
Kim
,
T.
,
Song
,
J.
, and
Park
,
S.
,
2015
, “
Effects of Turbulence Enhancement on Combustion Process Using a Double Injection Strategy in Direct-Injection Spark-Ignition (DISI) Gasoline Engines
,”
Int. J. Heat Fluid Flow
,
56
, pp.
124
136
.
46.
Yang
,
X.
,
Keum
,
S.
, and
Kuo
,
T.-W.
,
2016
, “
Effect of Valve Opening/Closing Setup on Computational Fluid Dynamics Prediction of Engine Flows
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081503
.
47.
Serras-Pereira
,
J.
,
Aleiferis
,
P. G.
,
Richardson
,
D.
, and
Wallace
,
S.
,
2007
, “
Mixture Preparation and Combustion Variability in a Spray-Guided DISI Engine
,”
SAE
Technical Paper No. 2007-01-4033.
48.
Zhuang
,
H.
,
Hung
,
D. L. S.
,
Yang
,
J.
, and
Tian
,
S.
,
2016
, “
Investigation of Swirl Ratio Impact on In-Cylinder Flow in an SIDI Optical Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081505
.
49.
Van Dam
,
N.
, and
Rutland
,
C.
,
2016
, “
Understanding In-Cylinder Flow Variability Using Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102809
.
50.
Aleiferis
,
P. G.
,
Malcolm
,
J. S.
,
Todd
,
A. R.
,
Cairns
,
A.
, and
Hoffmann
,
H.
,
2008
, “
An Optical Study of Spray Development and Combustion of Ethanol, Iso-Octane and Gasoline Blends in a DISI Engine
,”
SAE
Technical Paper No. 2008-01-0073.
51.
Aleiferis
,
P. G.
, and
Rosati
,
M. F.
,
2012
, “
Flame Chemiluminescence and OH LIF Imaging in a Hydrogen-Fuelled Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1797
1812
.
52.
Drake
,
M. C.
,
Fansler
,
T. D.
,
Solomon
,
A. S.
, and
Szekely
,
G. A.
,
2003
, “
Piston Fuel Films as a Source of Smoke and Hydrocarbon Emissions From a Wall-Controlled Spark-Ignited Direct-Injection Engine
,”
SAE
Paper No. 2003-01-0547.
53.
Drake
,
M. C.
, and
Haworth
,
D. C.
,
2007
, “
Advanced Gasoline Engine Development Using Optical Diagnostics and Numerical Modeling
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
99
124
.
54.
Sick
,
V.
,
Drake
,
M. C.
, and
Fansler
,
T. D.
,
2010
, “
High-Speed Imaging for Direct-Injection Gasoline Engine Research and Development
,”
Exp. Fluids
,
49
(
4
), pp.
937
947
.
55.
Velji
,
A.
,
Yeom
,
K.
,
Wagner
,
U.
,
Spicher
,
U.
,
Rossbach
,
M.
,
Suntz
,
R.
, and
Bockhorn
,
H.
,
2010
, “
Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques
,”
SAE
Paper No. 2010-01-0352.
56.
Merola
,
S. S.
,
Sementa
,
P.
,
Tornatore
,
C.
, and
Vaglieco
,
B. M.
,
2010
, “
Effect of the Fuel Injection Strategy on the Combustion Process in a PFI Boosted Spark-Ignition Engine
,”
Energy
,
35
(
2
), pp.
1094
1100
.
57.
Attard
,
W. P.
, and
Blaxill
,
H.
,
2012
, “
A Gasoline Fueled Pre-Chamber Jet Ignition Combustion System at Unthrottled Conditions
,”
SAE
Paper No. 2012-01-0386.
58.
Agrell
,
F.
, and
Maskinkonstruktion
,
K. T. H. I. F.
,
2006
, “
Control of HCCI by Aid of Variable Valve Timings With Specialization in Usage of a Non-Linear Quasi-Static Compensation
,”
Doctoral thesis
, Department of Machine Design, Royal Institute of Technology, Stockholm, Sweden.
59.
Zhang
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
, and
Jia
,
M.
,
2014
, “
Effects of Tumble Combined With EGR (Exhaust Gas Recirculation) on the Combustion and Emissions in a Spark Ignition Engine at Part Loads
,”
Energy
,
65
, pp.
18
24
.
60.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
61.
Irimescu
,
A.
,
2012
, “
Performance and Fuel Conversion Efficiency of a Spark Ignition Engine Fueled With Iso-Butanol
,”
Appl. Energy
,
96
, pp.
477
483
.
You do not currently have access to this content.