To explore the potential of ammonia-based fuel as an alternative fuel for future power generation, studies involving robust mathematical, chemical, thermofluidic analyses are required to progress toward industrial implementation. Thus, the aim of this study is to identify reaction mechanisms that accurately represent ammonia kinetics over a large range of conditions, particularly at industrial conditions. To comprehensively evaluate the performance of the chemical mechanisms, 12 mechanisms are tested in terms of flame speed, NOx emissions and ignition delay against the experimental data. Freely propagating flame calculations indicate that Mathieu mechanism yields the best agreement within experimental data range of different ammonia concentrations, equivalence ratios, and pressures. Ignition delay times calculations show that Mathieu mechanism and Tian mechanism yield the best agreement with data from shock tube experiments at pressures up to 30 atm. Sensitivity analyses were performed in order to identify reactions and ranges of conditions that require optimization in future mechanism development. The present study suggests that the Mathieu mechanism and Tian mechanism are the best suited for the further study on ammonia/hydrogen combustion chemistry under practical industrial conditions. The results obtained in this study also allow gas turbine designers and modelers to choose the most suitable mechanism for combustion studies.

References

References
1.
Grannell
,
S. M.
,
Assanis
,
D. N.
,
Bohac
,
S. V.
, and
Gillespie
,
D. E.
,
2008
, “
The Fuel Mix Limits and Efficiency of a Stoichiometric, Ammonia, and Gasoline Dual Fueled Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042802
.
2.
Grannell
,
S.
,
Stack
,
C.
, and
Gillespie
,
D.
,
2010
, “
A Comparison of Combustion Promoters for Ammonia and Two Ways to Run Engines on Ammonia as the Only Fuel
,”
Annual NH3 Fuel Conference
, Romulus, MI, Sept. 26–28.
3.
Frigo
,
S.
, and
Gentili
,
R.
,
2013
, “
Analysis of the Behaviour of a 4-Stroke Si Engine Fuelled With Ammonia and Hydrogen
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1607
1615
.
4.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.
5.
Reiter
,
A. J.
, and
Kong
,
S.-C.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.
6.
Lear
,
W. E.
,
2007
, “
Ammonia-Fueled Combustion Turbines
,”
Annual NH3 Fuel Conference
, NH3 Fuel Association, San Francisco, CA, Oct. 15–16.
7.
Karabeyoglu
,
A.
, and
Evans
,
B.
,
2012
, “
Fuel Conditioning System for Ammonia Fired Power Plants
,”
Annual NH3 Fuel Conference
, NH3 Fuel Association, San Antonio, TX, Sept. 30–Oct. 3.
8.
Meyer
,
T.
,
Kumar
,
P.
,
Li
,
M.
,
Redfern
,
K.
, and
Diaz
,
D.
,
2011
, “
Ammonia Combustion With Near-Zero Pollutant Emissions
,”
Annual NH3 Fuel Conference
, NH3 Fuel Association, Portland, OR, Sept. 18–21.
9.
Ganley
,
J.
, and
Bowery
,
M. S.
,
2010
, “
Engine-Ready, Carbon Free Ammonia Fuel
,”
Annual NH3 Fuel Conference
, NH3 Fuel Association, Romulus, MI, Sept. 26–28.
10.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2016
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
(Part 2), pp.
1362
1371
.
11.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D. G.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.
12.
Nozari
,
H.
, and
Karabeyoğlu
,
A.
,
2015
, “
Numerical Study of Combustion Characteristics of Ammonia as a Renewable Fuel and Establishment of Reduced Reaction Mechanisms
,”
Fuel
,
159
, pp.
223
233
.
13.
Kumar
,
P.
, and
Meyer
,
T. R.
,
2013
, “
Experimental and Modeling Study of Chemical-Kinetics Mechanisms for H2–NH3–Air Mixtures in Laminar Premixed Jet Flames
,”
Fuel
,
108
, pp.
166
176
.
14.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.
15.
Duynslaegher
,
C.
,
Contino
,
F.
,
Vandooren
,
J.
, and
Jeanmart
,
H.
,
2012
, “
Modeling of Ammonia Combustion at Low Pressure
,”
Combust. Flame
,
159
(
9
), pp.
2799
2805
.
16.
Xiao
,
H.
,
Howard
,
M.
,
Valera-Medina
,
A.
,
Dooley
,
S.
, and
Bowen
,
P. J.
,
2016
, “
Study on Reduced Chemical Mechanisms of Ammonia/Methane Combustion Under Gas Turbine Conditions
,”
Energy Fuels
,
30
(
10
), pp.
8701
8710
.
17.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
18.
Duynslaegher
,
C.
,
Jeanmart
,
H.
, and
Vandooren
,
J.
,
2009
, “
Flame Structure Studies of Premixed Ammonia/Hydrogen/Oxygen/Argon Flames: Experimental and Numerical Investigation
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1277
1284
.
19.
Tian
,
Z.
,
Li
,
Y.
,
Zhang
,
L.
,
Glarborg
,
P.
, and
Qi
,
F.
,
2009
, “
An Experimental and Kinetic Modeling Study of Premixed NH3/CH4/O2/Ar Flames at Low Pressure
,”
Combust. Flame
,
156
(
7
), pp.
1413
1426
.
20.
Klippenstein
,
S. J.
,
Harding
,
L. B.
,
Glarborg
,
P.
, and
Miller
,
J. A.
,
2011
, “
The Role of NNH in NO Formation and Control
,”
Combust. Flame
,
158
(
4
), pp.
774
789
.
21.
Dagaut
,
P.
,
Glarborg
,
P.
, and
Alzueta
,
M.
,
2008
, “
The Oxidation of Hydrogen Cyanide and Related Chemistry
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
1
46
.
22.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.
23.
Lindstedt
,
R. P.
,
Lockwood
,
F. C.
, and
Selim
,
M. A.
,
1994
, “
Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation
,”
Combust. Sci. Technol.
,
99
(4–6), pp.
253
276
.
24.
Coda Zabetta, E.
, and
Hupa, M.
,
2008
, “
A Detailed Kinetic Mechanism With Methanol for Simulating Biomass Combustion and N-Pollutants
,”
Combust. Flame
,
152
(1–2), pp. 14–27.
25.
Mendiara
,
T.
, and
Glarborg
,
P.
,
2009
, “
Ammonia Chemistry in Oxy-Fuel Combustion of Methane
,”
Combust. Flame
,
156
(
10
), pp.
1937
1949
.
26.
Mével
,
R.
,
Javoy
,
S.
,
Lafosse
,
F.
,
Chaumeix
,
N.
,
Dupré
,
G.
, and
Paillard
,
C. E.
,
2009
, “
Hydrogen–Nitrous Oxide Delay Times: Shock Tube Experimental Study and Kinetic Modelling
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
359
366
.
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C., Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
GRI-Mech 3.0
,”
Gas Research Institute
, Des Plaines, IL.
28.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1
,”
Cantera Developers
, epub.
29.
Konnov
,
A. A.
,
Dyakov
,
I. V.
, and
De Ruyck
,
J.
,
2006
, “
Probe Sampling Measurements of NO in CH4+O2+N2 Flames Doped With NH3
,”
Combust. Sci. Technol.
,
178
(
6
), pp.
1143
1164
.
30.
Strohle
,
J.
, and
Myhrvold
,
T.
,
2007
, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
125
135
.
31.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
He
,
Z.
, and
Nagai
,
Y.
,
2014
, “
Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOx formation
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1214
1223
.
32.
Schultz
,
E.
, and
Shepherd
,
J.
,
2000
, “
Validation of Detailed Reaction Mechanisms for Detonation Simulation
,”
California Institute of Technology
, Pasadena, CA.
33.
Chaos
,
M.
, and
Dryer
,
F. L.
,
2008
, “
Syngas Combustion Kinetics and Applications
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1053
1096
.
34.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.
35.
Olm
,
C.
,
Zsély
,
I. G.
,
Pálvölgyi
,
R.
,
Varga
,
T.
,
Nagy
,
T.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2014
, “
Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms
,”
Combust. Flame
,
161
(
9
), pp.
2219
2234
.
36.
Um
,
D. H.
,
Joo
,
J. M.
,
Lee
,
S.
, and
Kwon
,
O. C.
,
2013
, “
Combustion Stability Limits and NOx Emissions of Nonpremixed Ammonia-Substituted Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14854
14865
.
37.
Lee
,
J. H.
,
Kim
,
J. H.
,
Park
,
J. H.
, and
Kwon
,
O. C.
,
2010
, “
Studies on Properties of Laminar Premixed Hydrogen-Added Ammonia/Air Flames for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1054
1064
.
You do not currently have access to this content.