Currently, the aviation sector is seeking for alternatives to kerosene from crude oil, as part of the efforts combating climate change by reducing greenhouse gas (GHG) emissions, in particular carbon dioxide (CO2), and ensuring security of supply at affordable prices. Several synthetic jet fuels have been developed including sustainable biokerosene, a low-carbon fuel. Over the last years, the technical feasibility as well as the compatibility of alternative jet fuels with today's planes has been proven However, when burning a jet fuel, the exhaust gases are a mixture of many species, going beyond CO2 and water (H2O) emissions, with nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (UHC) including aromatic species and further precursors of particles and soot among them. These emissions have an impact on the local air quality as well as on the climate (particles, soot, contrails). Therefore, a detailed knowledge and understanding of the emission patterns when burning synthetic aviation fuels are inevitable. In the present paper, these issues are addressed by studying numerically the combustion of four synthetic jet fuels (Fischer–Tropsch fuels). For reference, two types of crude-oil-based kerosene (Jet A-1 and Jet A) are considered, too. Plug flow calculations were performed by using a detailed chemical-kinetic model validated previously. The composition of the multicomponent jet fuels was imaged by using the surrogate approach. Calculations were done for relevant temperatures, pressures, residence times, and fuel equivalence ratios φ. Results are discussed for NOx, CO as well as for benzene and acetylene as major soot precursors. According to the predictions, the NOx and CO emissions are within about ±10% for all fuels considered, within the parameter range studied: T = 1800 K, T = 2200 K; 0.25 ≤ φ ≤ 1.8; p = 40 bar; t = 3 ms. The aromatics free GtL (gas to liquid) fuel displayed higher NOx values compared to Jet A-1/A. In addition, synthetic fuels show slightly lower (better) CO emission data than Jet A-1/A. The antagonist role of CO and NOx is apparent. Major differences were predicted for benzene emissions, depending strongly on the aromatics content in the specific fuel, with lower levels predicted for the synthetic aviation fuels. Acetylene levels show a similar, but less pronounced, effect.

References

References
1.
OECD
,
2010
,
World Energy Outlook 2010
,
OECD Publishing
,
Paris
.
2.
Braun-Unkhoff
,
M.
,
Dembowski
,
J.
,
Herzler
,
J.
,
Karle
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2015
, “
Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Co-Firing to Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091503
.
3.
Braun-Unkhoff
,
M.
,
Ermel
,
J.
,
Richter
,
S.
,
Kick
,
T.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2015
, “
The Influence of Diluent Gases on Combustion Properties of Natural Gas: A Combined Experimental and Modeling Study
,”
ASME
Paper No. GT2015-42752.
4.
Braun-Unkhoff
,
M.
,
Kick
,
T.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2015
, “
An Investigation of Combustion Properties of Alternative Fuels
,”
10th European Conference on Industrial Furnaces and Boilers
, Porto, Portugal, Apr. 7–10.
5.
Methling
,
T.
,
Armbrust
,
N.
,
Haitz
,
T.
,
Speidel
,
M.
,
Poboss
,
N.
,
Braun-Unkhoff
,
M.
,
Dieter
,
H.
,
Kempter-Regel
,
B.
,
Kraaij
,
G.
,
Schliessmann
,
U.
,
Sterr
,
Y.
,
Wörner
,
A.
,
Hirth
,
T.
,
Riedel
,
U.
, and
Scheffknecht
,
G.
,
2014
, “
Power Generation Based on Biomass by Combined Fermentation and Gasification—A New Concept Derived From Experiments and Modelling
,”
Bioresour. Technol.
,
169
, pp.
510
517
.
6.
Herzler
,
J.
,
Herbst
,
J.
,
Kick
,
T.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2013
, “
Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031401
.
7.
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2013
, “
A Chemical-Kinetic Investigation of Combustion Properties of Alternative Fuels—A Step Towards a More Efficient Power Generation
,”
ASME
Paper No. GT2013-64994.
8.
Herzler
,
J.
,
Braun-Unkhoff
,
M.
, and
Naumann
,
C.
,
2011
, “
Study of Combustion Properties of Product Gases From Wood Gasification and Anaerobic Algae Fermentation
,”
19th European Biomass Conference and Exhibition
, Berlin, p.
836
.
9.
Braun-Unkhoff
,
M.
,
Kick
,
T.
,
Frank
,
P.
, and
Aigner
,
M.
,
2007
, “
Alternative Investigation on Laminar Flame Speed as Part of Needed Combustion Characteristics of Biomass-Based Syngas Fuels
,”
ASME
Paper No. GT2007-27479.
10.
IEA
,
2011
, “
Technology Roadmap–Biofuels for Transport Report
,” International Energy Agency (
IEA
), Paris.
11.
Hansen
,
N.
,
Braun-Unkhoff
,
M.
,
Kathrotia
,
T.
,
Lucassen
,
A.
, and
Yang
,
B.
,
2015
, “
Understanding the Reaction Pathways in Premixed Flames Fueled by Blends of 1,3-Butadiene and n-Butanol
,”
Proc. Combust. Inst.
35
(
1
), pp.
771
778
.
12.
Schuler
,
D.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
,
Zabel
,
F.
, and
Riedel
,
U.
,
2014
, “
A Single Pulse Shock Tube Study on the Pyrolysis of 2,5-Dimethylfuran
,”
Z. Physik. Chemie.
,
229
(
4
), pp.
529
548
.
13.
Kick
,
T.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2011
, “
An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels
,”
ASME
Paper No. GT2011-45606.
14.
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Marquetand
,
J.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic jet Fuels
,”
Energy
,
43
(
1
), pp.
111
123
.
15.
Mzé Ahmed
,
A.
,
Dagaut
,
P.
,
Hadj-Ali
,
K.
,
Dayma
,
G.
,
Kick
,
Th.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
Oxidation of a Coal-to-Liquid Synthetic jet Fuel: Experimental and Chemical Kinetic Modeling Study
,”
Energy Fuels
,
26
(
10
), pp.
6070
6079
.
16.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.
17.
ACARE
,
2011
, “
Protecting the Environment and the Energy Supply
,”
Advisory Council for Aviation Research and Innovation in Europe
, Derby, UK.
18.
High Level Group on Aviation Research
,
2011
, “
Flightpath 2050: Europe's Vision for Aviation
,” European Commission, Brussels, Belgium, Report No.
EUR 098 EN
.
19.
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2015
, “
Alternative Fuels in Aviation
,”
CEAS Aeron. J.
,
6
(
1
), pp.
83
93
.
20.
Braun-Unkhoff
,
M.
,
Kathrotia
,
T.
,
Rauch
,
B.
, and
Riedel
,
U.
,
2015
, “
About the Interaction Between Composition and Performance of Alternative jet Fuels
,”
CEAS Aeron. J.
,
7
(
1
), pp.
83
94
.
21.
Dooley
,
S.
,
Won
,
S. H.
,
Marcos
,
C.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oelschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.
22.
Shepherd
,
J. E.
,
Nuyt
,
C. D.
, and
Lee
,
J. J.
,
2010
, “
Flash Point and Chemical Composition of Aviation Kerosene (Jet A)
,” Explosion Dynamics Laboratory, Report No.
FM99-4
.
23.
Ministry of Defence
,
2012
, “
Turbine Fuel, Kerosene Type, Jet A-1 NATO Code F-35 Joint Service Designation: AVTUR
,” Ministry of Defence, London, Defence Standard No. 91-91 Issue 7 (Amd2).
24.
EU-Vri, 2013
, “
Alfa-BIRD: Alternative Fuels and Biofuels for Aircraft
,” EU-Vri, Stuttgart, Germany, Report No.
EUFP7/2007-2013
.
25.
Natelson
,
R. H.
,
Kurman
,
M. S.
,
Miller
,
D. L.
, and
Cernansky
,
N. P.
,
2008
, “
Oxidation of Alternative jet Fuels and Their Surrogate Components
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
AIAA
Paper No. 2008-970.
26.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative jet Fuels
,”
Combust. Flame
,
158
(
3
), pp.
434
445
.
27.
Bhagwan
,
R.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
, and
Turrini
,
F.
,
2014
, “
An Experimental Comparison of the Emissions Characteristics of Standard Jet A-1 and Synthetic Fuels
,”
Flow, Turbul. Combust.
92
(
4
), pp.
865
884
.
28.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1393
1417
.
29.
Braun-Unkhoff
,
M.
,
Riedel
,
U.
, and
Wahl
,
C.
,
2016
, “
About the Emissions of Alternative jet Fuels
,”
CEAS Aeronaut. J.
,
8
, p. 167.
30.
International Civil Aviation Organization (ICAO)
,
2008
,
Environmental Protection
,
3rd ed.
,
International Standards and Recommended Practices
,
Montréal, QC
,
Canada
.
31.
Bockhorn
,
H.
, ed.,
1994
,
Soot Formation in Combustion, Mechanisms and Models
,
Springer
,
Heidelberg, Germany
.
32.
Wang
,
H.
,
2011
, “
Formation of Nascent Soot and Other Condensed-Phase Materials in Flames
,”
Proc. Comb. Inst.
,
33
(1), pp.
41
67
.
33.
Böhm
,
H.
, and
Braun-Unkhoff
,
M.
,
2008
, “
Numerical Study on the Effect of Oxygenated Blending Compounds Soot Formation in Shock Tubes
,”
Combust. Flame
,
153
(1–2), pp.
84
96
.
34.
Böhm
,
H.
,
Braun-Unkhoff
,
M.
, and
Frank
,
P.
,
2003
, “
Investigations on Initial Soot Formation at High Pressures
,”
Prog. Comput. Fluid Dyn.
,
3
(2/3/4), pp.
145
150
.
35.
Hu
,
D.
,
Braun-Unkhoff
,
M.
, and
Frank
,
P.
,
2000
: “
Modeling Study on Initial Soot Formation at High Pressures
,”
Z. Physik. Chemie
,
214
(
4
), p.
473
.
36.
Xu
,
C.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Frank
,
P.
,
2007
, “
A Shock Tube Investigation of H Atom Production From the Thermal Dissociation of Ortho-Benzyne Radicals
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
231
239
.
37.
Braun-Unkhoff
,
M.
,
Chrysostomou
,
A.
,
Frank
,
P.
,
Gutheil
,
E.
,
Lückerath
,
R.
, and
Stricker
,
W.
,
1998
, “
Experimental and Numerical Study on Soot Formation in Laminar High Pressure Flames
,”
Proc. Combust. Inst.
,
27
(1), pp.
1565
1572
.
38.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
2nd ed.
,
Taylor & Francis
,
Philadelphia, PA
.
39.
Schulte
,
P.
, and
Schlager
,
H.
,
1996
, “
In-Flight Measurements of Cruise Altitude Nitric Oxide Emission Indices of Commercial Jet Aircraft
,”
Geophys. Res. Lett.
,
23
(
2
), pp.
165
168
.
40.
Turgut
,
E. T.
,
Cavcar
,
M.
,
Yay
,
O. D.
,
Ucarsu
,
M.
,
Yilmaz
,
E.
,
Usanmaz
,
O.
,
Armutlu
,
A.
,
Dogeroglu
,
T.
, and
Miake-Lye
,
R. C.
,
2015
, “
Analysis of Test-Cell Emission Measurements of Newly Overhauled Turbofan Engines
,”
J. Propul. Power
,
31
(
2
), pp. 559–572.
41.
Kinsey
,
J. S.
,
Timko
,
M. T.
,
Herndon
,
S. C.
,
Wood
,
E. C.
,
Yu
,
Z.
,
Miake-Lye
,
R. C.
,
Lobo
,
P.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Wey
,
C.
,
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Howard
,
R.
,
Bulzan
,
D. I.
,
Tacina
,
K. B.
, and
Knighton
,
W. B.
,
2012
, “
Determination of the Emissions From an Aircraft Auxiliary Power Unit (APU) During the Alternative Aviation Fuel Experiment (AAFEX)
,”
J. Air Waste Manage. Assoc.
,
62
(
4
), pp.
420
430
.
42.
Heland
,
J.
, and
Schäfer
,
K.
,
1998
, “
Determination of Major Combustion Products in Aircraft Exhausts by 5FTIR6 Emission Spectroscopy
,”
Atmos. Environ.
,
32
(
18
), pp.
3067
3072
.
43.
Beyersdorf
,
A. J.
,
Timko
,
M. T.
,
Ziemba
,
L. D.
,
Bulzan
,
D.
,
Corporan
,
E.
,
Herndon
,
S. C.
,
Howard
,
R.
,
Miake-Lye
,
R.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Wey
,
C.
,
Yu
,
Z.
, and
Anderson
,
B. E.
,
2014
, “
Reductions in Aircraft Particulate Emissions Due to the Use of Fischer–Tropsch Fuels
,”
Atmos. Chem. Phys.
,
14
(
1
), pp.
11
23
.
44.
Dagaut
,
P.
,
2012
, “
On the Kinetics of Hydrocarbons Oxidation From Natural Gas to Kerosene and Diesel Fuel
,”
Phys. Chem. Chem. Phys.
,
4
(
11
), pp.
2079
2094
.
45.
Kintech Lab.
,
2014
, “
CWB 4.1 Theory
,”
Kintech Lab
, Moscow, Russia.
46.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
47.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
2nd ed.
,
Blackwell Science
,
Malden, MA
.
48.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
J.
, and
Qin
,
Z.
,
1999
, “
GRI 3.0 Mechanism, Version 3.0 7/30/99
,”
Gas Research Institute
, Chicago, IL.
49.
Riebl
,
S.
,
2015
, “
Untersuchungen zum Verbrennungsverhalten von Alternativen Flugtreibstoffen Unter Berücksichtigung der Schadstoffe Stickoxide, Kohlenmonoxid und Benzol
,” Stuttgart University, Stuttgart, Germany.
50.
Watson
,
G. M. G.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2013
, “
Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions
,”
Energy Fuels
,
27
(
11
), pp.
7031
7043
.
51.
Lipardi
,
A. C. A.
,
Bergthorson
,
J. M.
, and
Bourque
,
G.
,
2016
, “
NOx Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051506
.
52.
Lee
,
D. S.
,
Pitari
,
G.
,
Grewe
,
V.
,
Gierens
,
K.
,
Penner
,
J. E.
,
Petzold
,
A.
,
Prather
,
M. J.
,
Schumann
,
U.
,
Bais
,
A.
,
Berntsen
,
T.
,
Iachetti
,
D.
,
Lim
,
L. L.
, and
Sausen
,
R.
,
2010
, “
Transport Impacts on Atmosphere and Climate: Aviation
,”
Atmos. Environ.
,
44
(
37
), pp.
4678
4734
.
53.
Corporan
,
E.
, and
Cheng
,
M.-D.
,
2010
, “
Emissions Characteristics of Military Helicopter Engines With JP-8 and Fischer–Tropsch Fuels
,”
J. Propul. Power
,
26
(
2
), pp.
317
324
.
54.
Changlie
,
W.
, and
Bulzan
,
D.
,
2013
, “
Effects of Bio-Derived Fuels on Emissions and Performance Using a 9-Point Lean Direct Injection Low Emissions Concept
,”
ASME
Paper No. GT2013-94888.
55.
Wilkerson
,
J. T.
,
Jacobson
,
M. Z.
,
Malwitz
,
A.
,
Balasubramanian
,
S.
,
Wayson
,
R.
,
Fleming
,
G.
,
Naiman
,
A. D.
, and
Lele
,
S. K.
,
2010
, “
Analysis of Emission Data From Global Commercial Aviation: 2004 and 2006
,”
Atmos. Chem. Phys.
,
10
(
13
), pp.
6391
6408
.
56.
Egli
,
R. A.
,
1990
, “
Nitrogen Oxide Emissions From Air Traffic
,”
CHIMIA
,
44
(
11
), pp.
369
371
.
57.
Gierens
,
K.
,
Braun-Unkhoff
,
M.
,
Le Clercq
,
P.
,
Plohr
,
M.
,
Schlager
,
H.
, and
Wolters
,
F.
,
2015
, “
Condensation Trails From Biofuels/Kerosene Blends Scoping Study
,” EU Tender, Brussels, Belgium, Report No. ENER/C2/2013-627.
You do not currently have access to this content.