Intake port flow performance plays a substantial role in determining the volumetric efficiency and in-cylinder charge motion of a spark-ignited engine. Steady-state flow bench and motored engine flow computational fluid dynamics (CFD) simulations were carried out to bridge these two approaches for the evaluation of port flow and charge motion (such as discharge coefficient, swirl/tumble ratios (SR/TR)). The intake port polar velocity profile and polar physical clearance profile were generated to evaluate the port performance based on local flow velocity and physical clearance in the valve-seat region. The measured data were taken from standard steady-state flow bench tests of an intake port for validation of CFD simulations. It was reconfirmed that the predicted discharge coefficients and swirl/tumble index (SI/TI) of steady flow bench simulations have a good correlation with those of motored engine flow simulations. Polar velocity profile is strongly affected by polar physical clearance profile. The polar velocity inhomogeneity factor (IHF) correlates well with the port discharge coefficient, swirl/tumble index. Useful information can be extracted from local polar physical clearance and velocity, which can help for intake port design.

References

References
1.
Lippert
,
A. M.
,
El Tahry
,
S. H.
,
Huebler
,
M. S.
,
Parrish
,
S. E.
,
Inoue
,
H.
, and
Noyori
,
T.
,
2004
, “
Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine—Full-Load Operation
,”
SAE
Paper No. 2004-01-0034.
2.
Gosman
,
A. D.
, and
Ahmed
,
A. M. Y.
,
1987
, “
Measurement and Multidimensional Prediction of Flow in an Axisymmetric Port/Valve Assembly
,”
SAE
Paper No. 870592.
3.
Xiaofeng
,
Y.
,
Jielun
,
L.
, and
Deming
,
J.
,
1990
, “
Three-Dimensional Simulation Calculation and Experimental Study of Flow in the Port of IC Engines
,”
Trans. CSICE
,
1990
(2), pp. 111–117.
4.
Godrie
,
P.
, and
Zellat
,
M.
,
1994
, “
Simulation of Flow Field Generated by Intake Port-Valve-Cylinder Configurations-Comparisons With Measurement and Applications
,”
SAE
Paper No. 940521.
5.
Aïta
,
S.
,
Tabbal
,
A.
,
Munck
,
G.
,
Fujiwara
,
K.
,
Hongoh
,
H.
,
Tamura
,
E.
, and
Obana
,
S.
,
1990
, “
Numerical Simulation of Port-Valve-Cylinder Flow in Reciprocating Engines
,”
SAE
Paper No. 900820.
6.
Dent
,
J. C.
, and
Chen
,
A.
,
1994
, “
Investigation of Steady Flow Through a Curved Inlet Port
,”
SAE
Paper No. 940522.
7.
Tayler
,
W.
, III
,
Leylek
,
L. H.
,
Sommer
,
R. G.
, and
Jain
,
S. K.
,
1998
, “
I.C. Engine Intake Region Design Modifications for Loss Reduction on CFD Methods
,”
SAE
Paper No. 981026.
8.
Bianchi
,
G. M.
,
Cantore
,
G.
, and
Fontanesi
,
S.
,
2002
, “
Turbulence Modeling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction
,”
SAE
Paper No. 2002-01-1118.
9.
Fontana
,
G.
,
Galloni
,
E.
, and
Palmaccio
,
R.
,
2003
, “
Development of a New Intake System for a Small Spark-Ignition Engine: Modeling the Flow Through the Inlet Valve
,”
SAE
Paper No. 2003-01-0369.
10.
Mesaros
,
L. M.
, and
Stephenson
,
P. W.
,
1999
, “
Application of Computational Mesh Optimizing Techniques to Heavy Duty Intake Port Modeling
,”
SAE
Paper No. 1999-01-1182.
11.
Selvaraj
,
B.
,
Sridhara
,
S. N.
,
Indraprakash
,
G.
,
Senthilkumar
,
A.
, and
Pangaonkar
,
A.
,
2011
, “
Effects of Intake Port Geometry on the Performance of an SI Engine
,” JSAE Paper No. 20119506/
SAE
Paper No. 2011-32-0506.
12.
Caulfield
,
S.
,
Rubenstein
,
B.
,
Martin
,
J.
,
Ruppel
,
P.
,
Meyer
,
M.
,
Lewis
,
S.
,
Tang
,
A.
, and
Tillock
,
B.
,
1999
, “
A Comparison Between CFD Predictions and Measurements of Inlet Port Discharge Coefficient and Flow Characteristics
,”
SAE
Paper No. 1999-01-3339/JSAE Paper No. 9938094.
13.
Rutland
,
C. J.
,
Pieper
,
C. M.
, and
Hessel
,
R.
,
1993
, “
Intake and Cylinder Flow Modeling With a Dual-Valve Port
,”
SAE
Paper No. 930069.
14.
Yang
,
X.
,
Chen
,
Z.
, and
Kuo
,
T.-W.
,
2013
, “
Pitfalls for Accurate Steady-State Port Flow Simulations
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p. 061601.
15.
Kuo
,
T.-W.
,
Yang
,
X.
,
Gopalakrishnan
,
V.
, and
Chen
,
Z.
,
2014
, “
Large Eddy Simulation (LES) for IC Engine Flows
,”
Oil Gas Sci. Technol.
,
69
(
1
), pp.
61
81
.
16.
Yang
,
X.
,
Gupta
,
S.
,
Kuo
,
T.-W.
, and
Gopalakrishnan
,
V.
,
2014
, “
RANS and LES of IC Engine Flows—A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
136
(5), p. 051507.
17.
Yang
,
X.
,
Keum
,
S.
, and
Kuo
,
T.-W.
,
2015
, “
Effect of Valve Setup on CFD Simulation of Gas Exchange Process
,”
ASME
Paper No. ICEF2015-1022.
18.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,” SAE Paper No. 2007-01-0159.
19.
Yang
,
X.
,
Solomon
,
A.
, and
Kuo
,
T.-W.
,
2012
, “
Ignition and Combustion Simulations of Spray-Guided SIDI Engine Using Arrhenius Combustion With Spark-Energy Deposition Model
,”
SAE
Paper No. 2012-01-0147.
You do not currently have access to this content.