Increased computing power has enabled designers to efficiently perform robust design analyses of engine systems. Traditional, filtered Monte Carlo methods involve creating surrogate model representations of a physics-based model in order to rapidly generate tens of thousands of model responses as design and technology input parameters are randomly varied within user-defined distributions. The downside to this approach is that the designer is often faced with a large design space, requiring significant postprocessing to arrive at probabilities of meeting design requirements. This research enhances the traditional, filtered Monte Carlo robust design approach by regressing surrogate responses of joint confidence intervals for metric responses of interest. Fitting surrogate responses of probabilistic confidence intervals rather than the raw response data changes the problem the engineer is able to answer. Using the new approach, the question can be better phrased in terms of the probability of meeting certain requirements. A more traditional approach does not have the ability to include confidence in the process without significant postprocessing. The process is demonstrated using a turboshaft engine modeled using the numerical propulsion system simulation (NPSS) program. The new robust design process enables the designer to account for probabilistic impacts of both technology and design variables, resulting in the selection of an engine cycle that is robust to requirements and technology uncertainty.

References

References
1.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2009
,
Engineering Design
,
4th ed.
,
McGraw-Hill
, New York.
2.
Mavris
,
D.
, and
Bandte
,
O.
,
1997
, “
Comparison of Two Probabilistic Techniques for the Assessment of Economic Uncertainty
,”
19th Annual Conference of the International Society of Parametric Analysts
, New Orleans, LA, May.
3.
Tolstykh
,
M.
,
Karl
,
A.
, and
Farris
,
B.
,
2012
, “
Robust Design Technique Used in Multi-Variable Probabilistic Design of Gas Turbine Components
,”
AIAA
Paper No. 2012-5636.
4.
Roth
,
B.
, and
Mavris
,
D.
,
2001
, “
Commercial Engine Architecture Selection in the Presence of Uncertainty and Evolving Requirements
,”
Fifteenth International Symposium on Air Breathing Engines
, Bangalore, India, Paper No. ISABE 2001-1169.
5.
Mavris
,
D. N.
,
Bandte
,
O.
, and
DeLaurentis
,
D. A.
,
1999
, “
Robust Design Simulation: A Probabilistic Approach to Multidisciplinary Design
,”
J. Aircraft
,
36
(
1
), pp.
298
307
.
6.
Kestner
,
B.
,
Jimenez
,
H.
,
Perullo
,
C.
,
Schutte
,
J.
, and
Mavris
,
D.
,
2013
, “
Identifying Key Technology Areas to Fundamentally Reduce Risk in Engine Performance and Noise for Future Commercial Applications
,”
ASME
Paper No. GT2013-95695.
7.
Li
,
H.
, and
Azarm
,
S.
,
2000
, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
411
418
.
8.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
9.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
10.
Kestner
,
B. K.
,
Schutte
,
J. S.
,
Tai
,
J. C. M.
,
Perullo
,
C. A.
, and
Mavris
,
D. N.
,
2012
, “
Surrogate Modeling for Simultaneous Engine Cycle and Technology Optimization for Next Generation Subsonic Aircraft
,”
ASME
Paper No. GT2012-68724.
11.
Batson
,
R. G.
,
1989
, “
Cost Risk Analysis Methodology: A State-of-the-Art Review
,”
Natl. Estimator: J. Natl. Estimating Soc.
,
8
(
3
), pp.
21
49
.
12.
Wu
,
C. F. J.
, and
Hamada
,
M. S.
,
2009
,
Experiments: Planning, Analysis, and Optimization
,
Wiley
,
New York
.
13.
Kestner
,
B. K.
,
Martin
,
K.
,
Perullo
,
C. A.
,
Schutte
,
J.
, and
Mavris
,
D. N.
,
2013
, “
Integrated System Design Using Bayesian Belief Networks
,”
AIAA
Paper No. 2013-0617.
14.
Kestner
,
B. K.
,
Perullo
,
C. A.
,
Sands
,
J. S.
, and
Mavris
,
D. N.
,
2014
, “
Bayesian Belief Network for Robust Engine Design and Architecture Selection
,”
ASME
Paper No. GT2014-27017.
15.
Jones
,
S. M.
,
2007
, “
An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code
,”
NASA Technical Memorandum
,
Report No. TM-2007-214690
.
16.
Tong
,
M. T.
,
Halliwell
,
I.
, and
Ghosn
,
L. J.
,
2004
, “
A Computer Code for Gas Turbine Weight and Disk Life Estimation
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
265
270
.
17.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2011
, “
Neural Network Toolbox for Use With MATLAB: User's Guide, R2011b
,” Mathworks, Natick, MA.
18.
Schutte
,
J.
,
Tai
,
J.
,
Sands
,
J.
, and
Mavris
,
D.
,
2012
, “
Cycle Design Exploration Using Multi-Design Point Approach
,”
ASME
Paper No. GT2012-69334.
19.
NAT
O,
2007
, “
Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation, Annex B.1—Compressor Systems Performance
,” NATO Research and Technology Organization, Neuilly-Sur-Seine, France,
NATO Technical Report No. TR-AVT-036
.
20.
Came
,
P. M.
, and
Robinson
,
C. J.
,
1998
, “
Centrifugal Compressor Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
139
155
.
21.
Veres
,
J. P.
, and
Thurman
,
D. R.
,
2010
, “
Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine
,” 66th Annual
AHS
International Forum and Technology Display
, Phoenix, AZ, May 11–13, Report No. E-17251.
22.
Snyder
,
C. A.
, and
Thurman
,
D. R.
,
2010
, “
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
,”
NASA Technical Memorandum
,
Report No. TM-2010-216089
.
23.
Gregory
,
B. B.
,
2003
, “
Small Engine Technology Investigation
,”
NASA Contractor Report No. CR-2003-212519
.
24.
Dickens
,
T.
, and
Day
,
I.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(031007), pp.
1
10
.
25.
Walston
,
W. S.
,
O'Hara
,
K. S.
,
Ross
,
E. W.
,
Pollock
,
T. M.
, and
Murphy
,
W. H.
,
1996
, “
Rene N6: Third Generation Single Crystal Superalloy
,”
Superalloys 1996 Eighth International Symposium
, pp.
27
34
.
26.
Clark
,
J. P.
,
Koch
,
P. J.
,
Puterbaugh
,
S. L.
,
Schmitz
,
J. T.
,
Morris
,
S. C.
,
Ma
,
R.
, and
Corke
,
T. C.
,
2010
, “
Highly Loaded Low-Pressure Turbine: Design, Numerical and Experimental Analysis
,” Wright-Patterson AFB, OH, AFRL, Report No. AFRL-RZ-WP-TP-2010-2143.
27.
Avery
,
C. B.
,
2007
, “
Electrical Generation and Distribution for the More Electric Aircraft
,” 42nd International Universities Power Engineering Conference, 2007 (
UPEC 2007
), Bristol, UK, Sept. 4–6.
28.
McLoughlin
,
A.
,
2009
, “
More Electric—Ready for Take Off?
,”
13th European Conference Power Electronics and Applications
, Sept. 8–10.
You do not currently have access to this content.