Impulse mistuning is an alternative approach for the reduction of vibration stresses of blades and vanes. In contrast to most other approaches, it is not a direct energy dissipation approach but a mistuning based one. However, the approach is not aimed at making use of the geometrical mistuning of the structure (e.g., a blade or a vane stage). Mistuners, specially designed small bodies are placed at specific locations inside of the component, e.g., of a blade or of a vane. They do not directly dissipate enough energy to cause relevant damping like a friction or friction-impact damper, because of the small mass involved, but rather mistune the eigen frequencies of the structure using impulses (impacts). As a result, the structure absorbs less energy at the original resonance and hence answers with lower vibration amplitude. In fact, impulse mistuning is a special case of absorption—the so-called targeted energy transfer (TET) with “vibro-impact nonlinear energy sinks” (VI-NES)—with very small impact mass involved, and thus, a negligible role of dissipation while experiencing a significant amount of absorption. The energy will be transferred (or “pumped”) to other resonances, sometimes outside of the primary resonance crossing and partially dissipated. We use the names “impulse mistuning” or “mistuners” instead of TET or VI-NES because (in our opinion) it better describes the physics of this special kind of absorption. In the paper, the design and validation of two impulse mistuning systems, for a blade stage and a vane cluster of a lower power turbine, are presented.

References

References
1.
Petrov
,
E. P.
,
Zachariadis
,
Z.-I.
,
Beretta
,
A.
, and
Elliott
,
R.
,
2013
, “
A Study of Nonlinear Vibrations in a Frictionally Damped Turbine Bladed Disk With Comprehensive Modeling of Aerodynamic Effects
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032504
.
2.
Hartung
,
A.
, and
Retze
,
U.
,
2007
, “
Damping of a Vane Cluster
,”
First CEAS European Air and Space Conference (CEAS 2007)
, Berlin, Germany, Sept. 10-13.
3.
Hollkamp
,
J. J.
,
Bagley
,
R. L.
, and
Gordon
,
R. W.
,
1999
, “
A Centrifugal Pendulum Absorber for Rotating, Hollow Engine Blade
,”
J. Sound Vib.
,
219
(
3
), pp.
539
549
.
4.
Duffy
,
K. P.
,
Bagley
,
R. L.
, and
Mehmed
,
O.
,
2000
, “
On a Self-Tuning Impact Vibration Damper for Rotating Turbomachinery
,”
AIAA
Paper No. 2000-3100.
5.
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
13
24
.
6.
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
Order-Reduced Vibration Absorbers for Cyclic Rotating Flexible Structures
,”
ASME
Paper No. DETC2005-84641.
7.
Olson
,
B. J.
, and
Shaw
,
S. W.
,
2008
, “
Vibration Absorber for Cyclic Rotating Flexible Structures: Linear and Nonlinear Tuning
,”
ASME
Paper No. SMASIS08-632.
8.
Hartung
,
A.
,
2004
, “
Some Features of Damped BLISKs
,” ECCOMAS 2004, Jyväskylä, Finland.
9.
Schirrock
,
D.
, and
Hartung
,
A.
,
2009
, “
Multi-Body Inside Damping of Hollow Blades
,” 16th International Congress on Sound and Vibration (ICSV16), July 5–9, 2009, Kraków, Poland.
10.
Hartung
,
A.
, and
Retze
,
U.
,
2011
, “
Multi-Body Damping of a Vane Cluster
,”
ASME
Paper No. GT2011-45666.
11.
Lopp
,
G. K.
, and
Kaufman
,
J. K.
,
2014
, “
Switch Triggers for Optimal Vibration Reduction via Resonance Frequency Detuning
,”
ASME
Paper No. GT2014-27263.
12.
Lee
,
Y. S.
,
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergmann
,
L. A.
,
2009
, “
Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments
,”
Physica D
,
238
(
18
), pp.
1868
1896
.
13.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II
,
Springer
,
Berlin, Germany
.
14.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
2007
), pp.
522
551
.
15.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Physica D
,
237
(
13
), pp.
1719
1733
.
16.
Gendelman
,
O. V.
,
2012
, “
Analytic Treatment of a System With a Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
331
(
21
), pp.
4599
4608
.
17.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. Nonlinear Mech.
,
52
, pp.
96
109
.
18.
Gourc
,
E.
,
Michon
,
G.
,
Serguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
19.
Wulf
,
J.
,
Busam
,
S.
,
Hartung
,
A.
, and
Pfützner
,
P.
,
2015
, “
Demonstrator Validation of Design Elements for the Next Generation of Geared Fan Engines
,” 22nd International Symposium on Air Breathing Engines (
ISABE 2015
), Phoenix, AZ, Oct. 25-30, Paper No. ISABE-2015-20171.
20.
Panossian
,
H. V.
,
1992
, “
Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique
,”
ASME J. Vib. Acoust.
,
114
(
1
), pp.
101
105
.
21.
Mueggler
,
E.
,
2010
, “
Internship Report
,” MTU Aero Engines, Munich, Germany.
22.
Hartung
,
A.
,
2010
, “
A Numerical Approach for the Resonance Passage Computation
,”
ASME
Paper No. GT2010-22051.
You do not currently have access to this content.