An energy-based framework is developed for welded steel and AL6061-T6 for assessment of nonlinear evolution of fatigue damage accumulation along fatigue life. The framework involves interrogation at continuum using a newly developed experimental procedure to determine the cyclic damaging energy to reveal that the accumulated fatigue damage evolves nonlinearly along cycle in case of low cycle fatigue but has somewhat linear relationship with cycle in case of high cycle fatigue. The accumulated fatigue damage is defined as the ratio of the accumulated cyclic damaging energy to the fatigue toughness, a material property and hence remains the same at all applied stress ranges. Based on the experimental data, a model is developed in order to predict cyclic damaging energy history at any applied stress range. The predicted fatigue damage evolution from the energy-based model are found to agree well with the experimental data.

References

References
1.
Yang
,
X.
,
Li
,
N.
,
Jin
,
Z.
, and
Wang
,
T.
,
1997
, “
A Continuous Low Cycle Fatigue Damage Model and Its Application in Engineering Materials
,”
Int. J. Fatigue
,
19
(
10
), pp.
687
692
.
2.
Chaboche
,
J. L.
,
1981
, “
Continuous Damage Mechanics—A Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des
,
64
(2), pp.
233
247
.
3.
Ozaltun
,
H.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2011
, “
An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components
,”
Exp. Mech.
,
51
(
5
), pp.
707
718
.
4.
Kachanov
,
L. M.
,
1958
, “
Time of Rupture Process Under Creep Conditions
,”
Isv. Akad. Nauk. SSA Otd. Tekh.
,
8
, pp.
26
31
.
5.
Robotnov
,
Y. N.
,
1969
, “
Creep Problems in Structure Members
,”
Isv. Akad. Nauk. SSA Otd. Tekh.
,
127
(
1
), pp.
26
31
.
6.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
, Cambridge, UK.
7.
Chaboche
,
J. L.
,
1988
, “
Continuum Damage Mechanics—Part II: Damage Growth, Crack Initiation and Crack Growth
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
65
72
.
8.
Chaboche
,
J. L.
,
1993
, “
Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage
,”
Int. J. Damage Mech.
,
2
(
4
), pp.
311
329
.
9.
Chaboche
,
J. L.
, and
Lesne
,
P. M.
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater.
,
11
(
1
), pp.
1
17
.
10.
Bhattacharya
,
B.
, and
Ellingwood
,
B.
,
1998
, “
Continuum Damage Mechanics Analysis of Fatigue Crack Initiation
,”
Int. J. Fatigue
,
20
(
9
), pp.
631
639
.
11.
Cheng
,
G.
,
Zuo
,
J.
,
Lou
,
Z.
, and
Kuang
,
Z.
,
1996
, “
Continuum Damage Model of Low-Cycle Fatigue and Fatigue Damage Analysis of Welded Joint
,”
Eng. Fract. Mech.
,
55
(
1
), pp.
155
161
.
12.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of The Art for Homogenous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.
13.
Jasper
,
T.
,
1923
, “
The Value of the Energy Relation in the Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate and High Temperatures
,”
Philos. Mag.
,
46
(274), pp.
609
627
.
14.
Enomoto
,
N.
,
1955
, “
On Fatigue Tests Under Progressive Stress
,”
ASTM
,
55
, pp.
903
917
.
15.
Feltner
,
C.
, and
Morrow
,
J.
,
1961
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Basic Eng.
,
83
(1), pp.
15
22
.
16.
Stowell
,
E. Z.
,
1966
, “
Energy Criterion for Fatigue
,”
Nucl. Eng. Des.
,
3
(
1
), pp.
32
40
.
17.
Scott-Emuakpor
,
O. E.
,
Shen
,
M.-H. H.
,
George
,
T. J.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2007
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Gas Turbines Power
,
129
(1), pp.
162
169
.
18.
Scott-Emuakpor
,
O. E.
,
Shen
,
M.-H. H.
,
George
,
T. J.
, and
Cross
,
C. J.
,
2008
, “
An Energy-Base Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engine Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p. 062504.
19.
Scott-Emuakpor
,
O. E.
,
George
,
T. J.
,
Cross
,
C. J.
, and
Shen
,
M.-H. H.
,
2010
, “
Hysteresis-Loop Representation for Strain Energy Calculation and Fatigue Assessment
,”
J. Strain Anal. Eng. Des.
,
45
(
4
), pp.
275
282
.
20.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Torsional-Shear Fatigue Lifing Method
,”
Exp. Mech.
,
52
(
7
), pp.
705
715
.
21.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Charles
,
C.
,
2012
, “
An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Procedure
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
024502
.
22.
Tarar
,
W.
,
Scott-Emuakpor
,
O.
, and
Shen
,
M.-H. H.
,
2010
, “
Development of New Finite Elements for Fatigue Life Prediction in Structural Components
,”
J. Struct. Eng. Mech.
,
35
(
6
), pp.
659
676
.
23.
Shen
,
M.-H. H.
, and
Akanda
,
S. R.
,
2015
, “
A Modified Closed Form Energy Based Framework for Fatigue Life Assessment for Aluminum 6061-T6—Damaging Energy Approach
,”
ASME J. Eng. Mater. Technol.
,
137
(2), p.
021008
.
24.
Ramberg
,
W.
, and
Osgood
,
W.
,
1943
, “
Description of Stress-Strain Curve by Three Parameters
,”
NACA Technical Note 902
, pp.
1
29
.
You do not currently have access to this content.