The present study aims to investigate the heat transfer and pressure loss characteristics for multiple rows of jets impinging on a curved surface in the presence of rib turbulators. The target plate contains a straight section downstream of the impingement section. The rib turbulators are added only over the straight section, in an attempt to enhance the heat transfer while minimizing the pressure loss. The jet plate configuration in this study has fixed jet hole diameters and hole spacing. For the curved plate, the radius of the target plate is 32 times the diameter of the impingement holes. Impingement array configuration was chosen such that validation and comparison can be made with the open literature. For all the configurations, crossflow air is drawn out in the streamwise direction. Average jet Reynolds numbers ranging from 55,000 to 125,000 were tested. Heat transfer characteristics are measured using steady-state temperature-sensitive paint (TSP) to obtain local heat transfer distribution. The experimental results are compared with computational fluid dynamics (CFD) simulations. CFD results show that CFD simulations predict the heat transfer distribution well in the postimpingement area with turbulators.

References

References
1.
Boyce
,
M. P.
,
2002
,
Gas Turbine Engineering Handbook
,
Gulf Professional Publishing
,
Houston, TX
.
2.
Terzis
,
A.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Integrally Case Turbine Airfoils
,”
Ph.D. dissertation
, Institute of of Aerospace Thermodymamics (ITLR), University of Stuttgart, Stuttgart, Germany, Thèse No. 6177.
3.
Uddin
,
N.
,
2008
, “
Turbulence Modeling of Complex Flows in CFD
,”
Ph.D. dissertation
, Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Stuttgart, Germany.
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
5.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient for Jet Array Impingement With Initial Cross Flow
,”
ASME J. Eng. Power
,
105
(
2
), pp.
296
304
.
6.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
E. D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
7.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Cross Flow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
8.
Trabold
,
T. A.
, and
Obot
,
N. T.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets—Part II: Effects of Crossflow in the Presence of Roughness Elements
,”
ASME J. Turbomach.
,
109
(
4
), pp.
594
601
.
9.
Hrycak
,
P.
,
1981
, “
Heat Transfer From a Row of Impinging Jets to Concave Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
407
419
.
10.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
11.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), pp.
011
021
.
12.
Gau
,
C.
, and
Lee
,
C. C.
,
1992
, “
Impingement Cooling Flow Structures and Heat Transfer Along Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3009
3020
.
13.
Hansen
,
G. L.
, and
Webb
,
W. B.
,
1993
, “
Air Jet Impingement Heat Transfer From Modified Surfaces
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
989
997
.
14.
Haiping
,
C.
,
Dalin
,
Z.
, and
Taiping
,
D.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,”
ASME
Paper No. 97-GT-331.
15.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
,
1998
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Effect of Geometric Parameters
,”
ASME
Paper No. 98-GT-208.
16.
Annerfeldt
,
M. O.
,
Persson
,
J. L.
, and
Torisson
,
T.
,
2001
, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,”
ASME
Paper No. 2001-GT-0149.
17.
Andrews
,
G. E.
,
Hussain
,
R. A. A.
, and
Mkpadi
,
M. C.
,
2006
, “
Enhanced Impingement Heat Transfer: The Influence of Impingement X/D for Interrrupted Rib Obstacles (Rectangular Pin Fins)
,”
ASME J. Turbomach.
,
128
(
2
), pp.
321
331
.
18.
Son
,
C.
,
Dailey
,
G.
,
Ireland
,
P.
, and
Gillespie
,
D.
,
2005
, “
An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System
,”
ASME
Paper No. GT2005-68504.
19.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
20.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
134
(
8
), p.
092201
.
21.
Spring
,
S.
,
Xing
,
Y.
, and
Weigand
,
B.
,
2012
, “
An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets With Surface Ribs
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082201
.
22.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.
23.
Brakmann
,
R.
,
Chen
,
L.
,
Weigand
,
B.
, and
Crawford
,
M.
,
2015
, “
Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins
,”
ASME
Paper No. GT2015-42149.
24.
Harrington
,
J.
,
Nayebzadeh
,
A.
,
Winn
,
J.
,
Wang
,
W.
,
Kapat
,
J.
,
Maurer
,
M.
, and
Thorpe
,
S.
,
2015
, “
Effect of Target Wall Curvature on Heat Transfer and Pressure Loss From Jet Array Impingement
,”
ASME
Paper No. GT2015-42761.
25.
Chandra
,
R. P.
,
Niland
,
M. E.
, and
Han
,
J. C.
,
1995
, “
Turbulent Flow Heat Transfer and Friction in a Rectangular Channel With Varying Number of Ribbed Walls
,”
ASME J. Turbomach.
,
119
(
2
), pp.
374
380
.
26.
Momin
,
A.-M. E.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3383
3396
.
27.
Maurer
,
M.
,
2008
, “
Experimental and Numerical Investigations of Convective Cooling Configurations for Gas Turbine Combustiors
,”
Ph.D. dissertation
, University of Stuttgart, Stuttgurt, Germany.
28.
ASME
,
2004
, “
ASME PTC 19.5 Flow Measurement Performance Test Codes
,” American Society of Mechanical Engineers, New York.
29.
Navarra
,
K. R.
,
1997
, “
Development of the Pressure-Sensitive-Paint Technique for Advanced Turbomachinery Applications
,”
Master's thesis
, Virginia Polytechnic Institute and State Univeristy, Blacksburg, VA.
30.
Liu
,
Q.
,
2006
, “
Study of Heat Transfer Characteristics of Impinging Air Jet Using Pressure and Temperature Sensitive Luminescent Paint
,” Ph.D. dissertation, University of Central Florida, Orlando, FL.
31.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
32.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
33.
Parneix
,
S.
, and
Durbin
,
P.
,
1997
, “
Numerical Simulation of 3D Turbulent Boundary Layers Using the V2F Model
,”
Annual Research Briefs
, Center for Turbulence Research, Stanford University, Stanford, CA, pp.
135
148
.
34.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1998
, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystal Technique
,”
Exp. Therm. Fluid Sci.
,
18
(
2
), pp.
142
149
.
35.
Ricklick
,
M.
, and
Kapat
,
J. S.
,
2011
, “
Determination of a Local Bulk Temperature Based Heat Transfer Coefficient for the Wetted Surfaces in a Single Inline Row Impingement Channel
,”
ASME J. Turbomach.
,
133
(
3
), p.
031008
.
36.
Hossain
,
J.
,
Tran
,
L. V.
,
Kapat
,
J. S.
,
Fernandez
,
E.
, and
Kumar
,
R.
,
2014
, “
An Experimental Study of Detailed Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel
,”
ASME
Paper No. GT2014-26498.
37.
CD-adapco
,
2015
, “
Star CCM+ 10.02.014 Documentation
,”
CD-adapco
,
Melville, NY
.
You do not currently have access to this content.