Trapped vortex combustor (TVC) is a relatively new concept, having potential application in gas turbine engines. In this work, an attempt has been made to characterize the 2D twin cavity TVC experimentally in terms of its visible flame length, pollutant emission level, and exit temperature profile. Besides this, numerical results are also discussed to explain certain intricacies in flow and flame characteristics. Experimental results reveal that visible flame length value is sensitive to mainstream Reynolds number (Rems), primary (cavity) air velocity (Vp), and cavity equivalence ratio (Φc). For a particular Rems and Φc, an increase in Vp results in longer flame length; whereas, flame length gets shortened at higher mainstream Reynolds number cases. Numerical studies indicate that shortening of flame length at higher Rems cases is caused due to quenching of flame at the shear layer by the incoming flow. An attempt has been made to correlate flame length data with the operating parameters and Damkohler number (Da); Da takes care of flame quenching effects. Moreover, it is also brought out that the emission profile at the combustor exit is dependent on primary air velocity, mainstream Reynolds number, and cavity equivalence ratio. Emission studies indicate that higher primary air velocity cases make the carbon monoxide (CO) and unburned hydrocarbon (UHC) emission levels to lower values. Reduction in emission level is caused mainly due to the flame merging effects. Besides this, the influence of cavity flame merging on the exit temperature profile uniformity is also brought out. This study reveals that merging of cavity flames is essential for the optimized operation of a 2D trapped vortex combustor.

References

References
1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
Taylor and Francis
, Boca Raton, FL.
2.
Mishra
,
D. P.
,
2011
,
Gas Turbine Propulsion
,
Annamaya Publisher
,
New Delhi, India
.
3.
Lieuwen
,
T.
, and
McManus
,
K.
,
2003
, “
Introduction: Combustion Dynamics in Lean Premixed Prevaporized (LPP) Gas Turbines
,”
J. Propul. Power
,
19
(
5
), p.
721
.
4.
Hsu
,
K.-Y.
,
Goss
,
L. P.
, and
Roquemore
,
W. M.
,
1995
, “
Characteristics of a Trapped Vortex Combustor
,”
J. Propul. Power
,
14
(
1
), pp.
1
12
.
5.
Roquemore
,
W. M.
,
Shouse
,
D.
,
Burrus
,
D.
,
Johnson
,
A.
,
Cooper
,
C.
,
Duncar
,
B.
,
Hsu
,
K.-Y.
,
Katta
,
V. R.
,
Sturgess
,
G. J.
, and
Vihinei
,
I.
,
2001
, “
Trapped Vortex Combustor Concept for Gas Turbine Engines
,”
AIAA
Paper No. 2001-0483.
6.
Edmonds
,
R. G.
,
Williams
,
J. T.
,
Steele
,
R. C.
,
Straub
,
D. L.
,
Casleton
,
K. H.
, and
Bining
,
A.
,
2008
, “
Low NOx Advanced Vortex Combustor
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
034502
.
7.
Barringer
,
M.
,
2001
, “
Design and Benchmarking of a Combustor Simulator Relevant to Gas Turbine Engines
,”
M.S. thesis
, Virginia Polytechnic Institute, Blacksburg, VA.
8.
Straub
,
D. L.
,
Casleton
,
K. H.
,
Lewis
,
R. E.
,
Sidwell
,
T. G.
,
Maloney
,
D. J.
, and
Richards
,
G. A.
,
2005
, “
Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
36
41
.
9.
Xing
,
F.
,
Zhang
,
S.
,
Wang
,
P.
, and
Fan
,
W.
,
2010
, “
Experimental Investigation of a Single Trapped-Vortex Combustor With a Slight Temperature Rise
,”
Aerosp. Sci. Technol.
,
14
(
7
), pp.
520
525
.
10.
Singhal
,
A.
, and
Ravikrishna
,
R. V.
,
2011
, “
Single Cavity Trapped Vortex Combustor Dynamics—Part2: Simulations
,”
Int. J. Spray Combust. Dyn.
,
3
(
1
), pp.
45
62
.
11.
Gutmark
,
E. J.
,
Paschereit
,
C. O.
,
Guyot
,
D.
,
Lacarelle
,
A.
,
Moeck
,
J. P.
,
Schimek
,
S.
,
Faustmann
,
T.
, and
Bothien
,
M. R.
,
2007
, “
Combustion Noise in a Flameless Trapped Vortex Reheat Burner
,”
AIAA
Paper No. 2007-3697.
12.
Jeongseog
,
O. H.
,
Hwang
,
J.
, and
Yoon
,
Y.
,
2010
, “
EINOx Scaling in a Non-Premixed Turbulent Hydrogen Jet With Swirled Coaxial Air
,”
Int. J. Hydrogen Energy
,
35
(16), pp.
8715
8722
.
13.
Munki
,
K.
,
Jeongseog
,
O. H.
, and
Youngbin
,
Y.
,
2011
, “
Flame Length Scaling in a Non-Premixed Turbulent Diluted Hydrogen Jet With Coaxial Air
,”
Fuel
,
90
(
8
), pp.
2624
2629
.
14.
Mishra
,
D. P.
,
2010
,
Fundamentals of Combustion
,
Prentice Hall of India
,
New Delhi, India
.
15.
Santosh
,
J. S.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blow Off of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.
16.
Robinson
,
C.
, and
Smith
,
D. B.
,
1984
, “
The Auto-Ignition Temperature of Methane
,”
J. Hazard. Mater.
,
8
(
3
), pp.
199
203
.
You do not currently have access to this content.