This paper deals with high-frequency (HF) thermoacoustic instabilities in swirl-stabilized gas turbine combustors. Driving mechanisms associated with periodic flame displacement and flame shape deformations are theoretically discussed, and corresponding flame transfer functions (FTF) are derived from first principles. These linear feedback models are then evaluated by means of a lab-scale swirl-stabilized combustor in combination with part one of this joint publication. For this purpose, the models are used to thermoacoustically characterize a complete set of operation points of this combustor facility. Specifically, growth rates of the first transversal modes are computed, and compared against experimentally obtained pressure amplitudes as an indicator for thermoacoustic stability. The characterization is based on a hybrid analysis approach relying on a frequency domain formulation of acoustic conservation equations, in which nonuniform temperature fields and distributed thermoacoustic source terms/flame transfer functions can be straightforwardly considered. The relative contribution of flame displacement and deformation driving mechanisms–i.e., their significance with respect to the total driving–is identified. Furthermore, promoting/inhibiting conditions for the occurrence of high frequency, transversal acoustic instabilities within swirl-stabilized gas turbine combustors are revealed.

References

References
1.
Schuermans
,
B.
,
Bothien
,
M. R.
,
Maurer
,
M.
, and
Bunkute
,
B.
,
2015
, “
Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/24 Reheat Combustors
,”
ASME
Paper No. GT2015-42287.
2.
Sattelmayer
,
T.
,
2010
, “
Grundlagen der Verbrennung in Stationären Gasturbinen
,”
Stationäre Gasturbinen
, 2. neu bearbeitete Auflage,
Springer Verlag
, Heidelberg, Germany, Chap. 9, pp.
397
452
.
3.
Culick
,
F. E. C.
,
2006
,
Unsteady Motions in Combustion Chambers for Propulsion Systems. Number AC/323(AVT-039)TP/103
,
AGARDograph
, RTO/NATO, Neuilly-Sur-Seine, France.
4.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-0549.
5.
Dowling
,
A.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
6.
Polifke
,
W.
,
2004
,
Combustion Instabilities
(VKI Lecture Series), von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
7.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York.
8.
Schwing
,
J.
, and
Sattelmayer
,
T.
,
2013
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.
9.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Positions in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.
10.
Schwing
,
J.
,
2013
, “
Über die Interaktion von Transversalen Akustischen Moden, Strömung und Drallstabilisierter Flamme in Zylindrischen Flammenrohren
,” Ph.D. thesis, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
11.
Zellhuber
,
M.
,
2013
, “
High Frequency Response of Auto-Ignition and Heat Release to Acoustic Perturbations
,”
Ph.D. thesis
, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
12.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigations of Thermoacoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.
13.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Process
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
14.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME
Paper No. GT2016-57583.
15.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57913.
16.
Hummel
,
T.
,
Hammer
,
K.
,
Romero
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Low-Order Modeling of Nonlinear Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57913.
17.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
18.
Rayleigh
,
J.
,
1945
,
The Theory of Sound
, Vol.
1–2
,
Dover Publications
,
New York
.
19.
Schimek
,
S.
,
Cosic
,
B.
,
Moeck
,
J.
,
Terhaar
,
S.
, and
Paschereit
,
C.
,
2015
, “
Amplitude-Dependent Flow Field and Flame Response to Axial and Tangential Velocity Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081501
.
20.
Gikadi
,
J.
,
2013
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier–Stokes Equations in Frequency Space
,”
Ph.D. thesis
, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
21.
Rao
,
P.
, and
Morris
,
P.
,
2006
, “
Use of Finite Element Methods in Frequency Domain Aeroacoustics
,”
AIAA J.
,
44
(
7
), pp.
1643
1652
.
22.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, New York.
You do not currently have access to this content.