There are increasing pressures upon the automotive industry to reduce harmful emissions as well as meeting the key objective of enhanced fuel efficiency, while improving or retaining the engine output power. The losses in an internal combustion (IC) engine can be divided into thermal and parasitic as well as due to gas leakage because of untoward compression ring motions. Frictional losses are particularly of concern at low engine speeds, assuming a greater share of the overall losses. Piston–cylinder system accounts for nearly half of all the frictional losses. Loss of sealing functionality of the ring pack can also contribute significantly to power losses as well as exacerbating harmful emissions. The dynamics of compression ring is inexorably linked to its tribological performance, a link which has not been made in many reported analyses. A fundamental understanding of the interplay between the top compression ring three-dimensional elastodynamic behavior, its sealing function and contribution to the overall frictional losses is long overdue. This paper provides a comprehensive integrated transient elastotribodynamic analysis of the compression ring to cylinder liner and its retaining piston groove lands' conjunctions, an approach not hitherto reported in the literature. The methodology presented aims to aid the piston ring design evaluation processes. Realistic engine running conditions are used which constitute international drive cycle testing conditions.

References

References
1.
Smedley
,
G.
,
2004
, “
Piston Ring Design for Reduced Friction in Modern Internal Combustion Engines
,”
M.Sc. thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://dspace.mit.edu/handle/1721.1/27129
2.
Priest
,
M.
, and
Taylor
,
C. M.
,
2000
, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
(
2
), pp.
193
203
.
3.
Furuhama
,
S.
,
1959
, “
A Dynamic Theory of Piston-Ring Lubrication: 1st Report, Calculation
,”
Bull. JSME
,
2
(
7
), pp.
423
428
.
4.
Furuhama
,
S.
,
1960
, “
A Dynamic Theory of Piston-Ring Lubrication: 2nd Report, Experiment
,”
Bull. JSME
,
3
(
10
), pp.
291
297
.
5.
Furuhama
,
S.
,
1961
, “
A Dynamic Theory of Piston-Ring Lubrication: 3rd Report, Measurement of Oil Film Thickness
,”
Bull. JSME
,
4
(
16
), pp.
744
752
.
6.
Tian
,
T.
,
Noordzij
,
L.
,
Wong
,
V. W.
, and
Heywood
,
J. B.
,
1998
, “
Modeling Piston-Ring Dynamics, Blowby, and Ring-Twist Effects
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
843
854
.
7.
Tian
,
T.
,
2002
, “
Dynamic Behaviours of Piston Rings and Their Practical Impact—Part 1: Ring Flutter and Ring Collapse and Their Effects on Gas Flow and Oil Transport
,”
Proc. Inst. Mech. Eng., Part J
,
216
(
4
), pp.
209
228
.
8.
Fox
,
M. F.
,
Jones
,
C. J.
,
Picken
,
D. J.
, and
Stow
,
C. G.
,
1997
, “
The ‘Limits of Lubrication’ Concept Applied to the Piston Ring Zone Lubrication of Modern Engines
,”
Tribol. Lett.
,
3
(
1
), pp.
99
106
.
9.
Richardson
,
D. E.
,
2000
, “
Review of Power Cylinder Friction for Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
122
(
4
), pp.
506
519
.
10.
Andersson
,
P.
,
Tamminen
,
J.
, and
Sandström
,
C.
,
2002
, “
Piston Ring Tribology: A Literature Survey
,” VTT Tiedotteita, Report No. VTT -TIED -2178.
11.
Littlefair
,
B.
,
De la Cruz
,
M.
,
Theodossiades
,
S.
,
Mills
,
R.
,
Howell-Smith
,
S.
,
Rahnejat
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2014
, “
Transient Tribo-Dynamics of Thermo-Elastic Compliant High-Performance Piston Skirts
,”
Tribol. Lett.
,
53
(
1
), pp.
51
70
.
12.
Littlefair
,
B.
,
De La Cruz
,
M.
,
Mills
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
,
Dwyer-Joyce
,
R.
, and
Howell-Smith
,
S.
,
2014
, “
Lubrication of a Flexible Piston Skirt Conjunction Subjected to Thermo-Elastic Deformation: A Combined Numerical and Experimental Investigation
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
1
), pp.
69
81
.
13.
Rahmani
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2012
, “
Transient Elastohydrodynamic Lubrication of Rough New or Worn Piston Compression Ring Conjunction With an Out-of-Round Cylinder Bore
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
4
), pp.
284
305
.
14.
Namazian
,
M.
, and
Heywood
,
J. B.
,
1982
, “
Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power
,”
SAE
Technical Paper No. 820088.
15.
Hill
,
S. H.
, and
Newman
,
B. A.
,
1984
, “
Piston Ring Designs for Reduced Friction
,”
SAE
Technical Paper No. SAE-TP-841222.
16.
Mishra
,
P. C.
,
Rahnejat
,
H.
, and
King
,
P. D.
,
2009
, “
Tribology of the Ring—Bore Conjunction Subject to a Mixed Regime of Lubrication
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
4
), pp.
987
998
.
17.
Furuhama
,
S.
, and
Sasaki
,
S.
,
1983
, “
New Device for the Measurement of Piston Frictional Forces in Small Engines
,”
SAE
Technical Paper No. 831284.
18.
Baker
,
C. E.
,
Rahmani
,
R.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2011
, “
Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment
,”
SAE
Technical Paper No. 2011-01-1535.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/13989
19.
Dowson
,
D.
,
Economou
,
P. N.
,
Ruddy
,
B. L.
,
Strachan
,
P. J.
, and
Baker
,
A. J. S.
,
1979
, “
Piston Ring Lubrication—Part II: Theoretical Analysis of a Single Ring and a Complete Ring Pack
,”
Energy Conservation Through Fluid Film Lubrication Technology: Frontiers in Research and Design
,
S. M.
Rohde
,
D. F.
Wilcock
,
D. F.
, and
H. S.
Cheng
, eds., American Society of Mechanical Engineers, New York, pp.
23
52
.
20.
Tian
,
T.
,
2002
, “
Dynamic Behaviours of Piston Rings and Their Practical Impact—Part 2: Oil Transport, Friction and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics
,”
Proc. Inst. Mech. Eng., Part J
,
216
(
4
), pp.
229
248
.
21.
Kurbet
,
S. N.
, and
Kumar
,
R. K.
,
2004
, “
A Finite Element Study of Piston Tilt Effects on Piston Ring Dynamics in Internal Combustion Engines
,”
Proc. Inst. Mech. Eng., Part K
,
218
(
2
), pp.
107
117
.
22.
Baelden
,
C.
, and
Tian
,
T.
,
2014
, “
A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities
,”
SAE
Paper No. 2014-01-1085.
23.
Ma
,
M. T.
,
Smith
,
E. H.
, and
Sherrington
,
I.
,
1997
, “
Analysis of Lubrication and Friction for a Complete Piston-Ring Pack With an Improved Oil Availability Model: Part 2: Circumferentially Variable Film
,”
Proc. Inst. Mech. Eng., Part J
,
211
(
1
), pp.
17
27
.
24.
Baker
,
C. E.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2012
, “
Influence of In-Plane Dynamics of Thin Compression Rings on Friction in Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092801
.
25.
Baker
,
C. E.
,
Rahmani
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2015
, “
On the Effect of Transient In-Plane Dynamics of the Compression Ring Upon Its Tribological Performance
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032512
.
26.
Takiguchi
,
M.
,
Sasaki
,
R.
,
Takahashi
,
I.
,
Ishibashi
,
F.
,
Furuhama
,
S.
,
Kai
,
R.
, and
Sato
,
M.
,
2000
, “
Oil Film Thickness Measurement and Analysis of a Three Ring Pack in an Operating Diesel Engine
,”
SAE
Paper No. 01-1787.
27.
Ojalvo
,
I. U.
,
1962
, “
Coupled Twist-Bending Vibrations of Incomplete Elastic Rings
,”
Int. J. Mech. Sci.
,
4
(
1
), pp.
53
72
.
28.
Lang
,
T. E.
,
1962
, “
Vibration of Thin Circular Rings
,” Jet Propulsion Laboratory Technical Report, Report No. 32-261.
29.
Burington
,
R. S.
,
1958
,
Handbook of Mathematical Tables and Formulas
,
3rd ed.
,
Handbook Publishers
,
Sandusky, OH
.
30.
Archer
,
R. R.
,
1960
, “
Small Vibrations of Thin Incomplete Circular Rings
,”
Int. J. Mech. Sci.
,
1
(
1
), pp.
45
56
.
31.
Morris
,
N.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
King
,
P. D.
, and
Fitzsimons
,
B.
,
2013
, “
Tribology of Piston Compression Ring Conjunction Under Transient Thermal Mixed Regime of Lubrication
,”
Tribol. Int.
,
59
, pp.
248
258
.
33.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculations in Elastohydrodynamic Contacts
,”
ASME J. Tribol.
,
107
(
2
), pp.
241
248
.
34.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
35.
Teodorescu
,
M.
,
Balakrishnan
,
S.
, and
Rahnejat
,
H.
,
2005
, “
Integrated Tribological Analysis Within a Multi-Physics Approach to System Dynamics
,”
Tribol. Interface Eng. Ser.
,
48
, pp.
725
737
.
36.
Styles
,
G.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2014
, “
In-Cycle and Life-Time Friction Transience in Piston Ring-Liner Conjunction Under Mixed Regime of Lubrication
,”
Int. J. Engine Res.
,
15
(
7
), pp.
862
876
.
37.
Baker
,
C.
,
Rahmani
,
R.
,
Karagiannis
,
I.
,
Theodossiades
,
S.
,
Rahnejat
,
R.
, and
Frendt
,
A.
,
2014
, “
Effect of Compression Ring Elastodynamics Behaviour Upon Blowby and Power Loss
,”
SAE
Technical Paper No. 2014-01-1669.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/15883
You do not currently have access to this content.