Ceramic turbines can reduce fuel consumption by increasing turbine inlet temperatures (TIT). The need for heat-resistant materials like ceramics is particularly acute for small turbomachines for which efficiencies are limited by the use of uncooled metal turbine as complex cooling schemes are impractical and costly. Efforts to introduce ceramics in the turbine rotor were made between the 1960s and the 1990s by gas turbines and automotive manufacturers in the U.S., Europe, and Japan. While significant progress was made, a suitable level of reliability still cannot be achieved as the brittleness of ceramics leads to crack propagation in the blades loaded in tension and catastrophic failure. The inside-out ceramic turbine (ICT) is a design alternative specific to ceramics that loads the blades in compression by using an outer, air-cooled composite rim that sustains the centrifugal loads. This paper provides an analytical model based on the Brayton cycle to compute the system-level performance of microturbines using an ICT. Loss submodels specific to ICT architectures are developed to account for: (1) composite rim drag, (2) composite rim cooling, (3) leakage through rotating seals, and (4) expansion heat losses. The thermodynamic core model is validated against three state-of-the-art, non-inside-out, microturbines. Based on a Monte Carlo simulation that takes into account the modeling uncertainties, the model predicts a cycle efficiency of 45±1% for a 240 kW ICT-based microturbine, leading to a predicted reduction in fuel consumption of 20% over current all-metal microturbines.

References

References
1.
Massardo
,
A. F.
,
McDonald
,
C. F.
, and
Korakianitis
,
T.
,
2000
, “
Microturbine/Fuel-Cell Coupling for High-Efficiency Electrical-Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
110
116
.
2.
De Biasi
,
V.
,
2014
, “
Air-Cooled 7HA and 9HA Designs Rated at Over 61% Efficiency
,”
Gas Turbine World
,
44
(
2
), pp.
10
13
.
3.
Bevilacqua
,
L. A.
, and
Lightfoot
,
W. E.
,
1985
, “
Advanced Concepts in Small Helicopter Engine Air-Cooled Turbine Design
,”
Int. J. Turbo Jet Engines
,
2
(
4
), pp.
327
336
.
4.
Energy and Environmental Analysis, Inc.,
2003
, “
Advanced Microturbine System: Market Assessment
,” U.S.
Department of Energy
, Arlington, VA.
5.
Roode
,
M. V.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
,
2002
,
Ceramic Gas Turbine Design and Test Experience
,
ASME Press
, New York.
6.
Takehara
,
I.
,
Tatsumi
,
T.
, and
Ichikawa
,
Y.
,
2002
, “
Summary of CGT302 Ceramic Gas Turbine Research and Development Program
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
627
635
.
7.
Coty
,
P. J.
,
1983
, “
Compression Structured Ceramic Turbine Rotor Concept
,”
Ceramics for High-Performance Applications III
,
E. M.
Lenoe
,
R. N.
Katz
, and
J. J.
Burke
, eds.,
Springer
, New York, pp.
427
441
.
8.
Rudolf
,
M. H. E.
,
1962
, “
Axial Flow Gas Turbine
,” U.S. Patent No. US3042366 A.
9.
Kochendörfer
,
R.
,
1979
, “
Compression Loaded Ceramic Turbine Rotor
,”
49th Meeting of the AGARD Structures and Materials Panel
, Porz-Wahn, Köln, Germany, Oct. 8, pp.
22/1
22/19
.
10.
Dubois
,
P. K.
,
Landry
,
C.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2017
, “
Experimental Validation of the Structural Integrity of an Inside-Out Ceramic Gas Turbine Prototype
,”
ASME J. Eng. Gas Turbines Power
(in press).
11.
Courtois
,
N.
,
Ebacher
,
F.
,
Dubois
,
P. K.
,
Kochrad
,
N.
,
Landry
,
C.
,
Charette
,
M.
,
Landry-Blais
,
A.
,
Fréchette
,
L.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2017
, “
Superalloy Cooling System for the Composite Rim of an Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2017-64007.
12.
Landry
,
C.
,
Dubois
,
P. K.
,
Courtois
,
N.
,
Charron
,
F.
,
Picard
,
M.
, and
Plante
,
J.-S.
,
2016
, “
Development of an Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2016-57041.
13.
Brouillette
,
M.
, and
Plante
,
J.-S.
,
2008
, “
Rotary Ramjet Engine
,”
U.S. Patent No. US7337606 B2
.
14.
Vézina
,
G.
,
Fortier-Topping
,
H.
,
Bolduc-Teasdale
,
F.
,
Rancourt
,
D.
,
Picard
,
M.
,
Plante
,
J.-S.
,
Brouillette
,
M.
, and
Fréchette
,
L.
,
2015
, “
Design and Experimental Validation of a Supersonic Concentric Micro Gas Turbine
,”
ASME J. Turbomach.
,
138
(
2
),
p
. 021007.
15.
Rancourt
,
D.
,
Picard
,
M.
,
Denninger
,
M.
,
Plante
,
J.-S.
,
Chen
,
J.
, and
Yousefpour
,
A.
,
2012
, “
Rim-Rotor Rotary Ramjet Engine—Part 1: Structural Design and Experimental Validation
,”
J. Propul. Power
,
28
(
6
), pp.
1293
1303
.
16.
Picard
,
M.
,
Rancourt
,
D.
,
Plante
,
J.-S.
, and
Brouillette
,
M.
,
2012
, “
Rim-Rotor Rotary Ramjet Engine—Part 2: Quasi-One-Dimensional Aerothermodynamic Design
,”
J. Propul. Power
,
28
(
6
), pp.
1304
1314
.
17.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
2nd ed.
,
Wiley
, Hoboken, NJ.
18.
Gordon
,
S.
, and
Mcbride
,
B. J.
,
1976
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman–Jouguet Detonations
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. N73-17724.
19.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. Royal Aeronaut. Soc.
,
69
, pp.
467
470
.
20.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2005
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, Butterworth–Heinemann, Oxford, UK.
21.
Saravanamuttoo
,
H. I. C.
,
Cohen
,
H.
, and
Rogers
,
G. F. C.
,
2001
, “
Gas Turbine Design Procedure
,”
Gas Turbine Theory
,
Pearson
, London.
22.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2011
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
23.
Scanlon
,
T.
,
Wilkes
,
J.
,
Bohn
,
D.
, and
Gentilhomme
,
O.
,
2004
, “
A Simple Method for Estimating Ingestion of Annulus Gas Into a Turbine Rotor Stator Cavity in the Presence of External Pressure Variations
,”
ASME
Paper No. GT2004-53097.
24.
Neumann
,
K.
,
1964
, “
Zur Frage der Verwendung von Durchblickdichtungen im Dampfturbinenbau
,”
Maschinenbautechnik
,
13
(
4
), pp.
188
195
.
25.
Nakazawa
,
N.
,
Sasaki
,
M.
,
Nishiyama
,
T.
,
Iwai
,
M.
,
Katagiri
,
H.
, and
Handa
,
N.
,
1997
, “
Status of the Automotive Ceramic Gas Turbine Development Program—Seven Years' Progress
,”
ASME
Paper No. 97-GT-383.
26.
Goulburn
,
J. R.
, and
Wilson
,
J. H.
,
1975
, “
High Speed Disk Friction Losses in a Gaseous Medium
,”
Int. J. Mech. Sci.
,
17
(
6
), pp.
379
385
.
27.
General Electric Company
, ed.,
Heat and Fluid Flow Data Book
,
Genium Publishing
,
New York
, Sect. 408.
28.
Çengel
,
Y. A.
,
2002
,
Heat Transfer: A Practical Approach
,
4th ed.
,
McGraw-Hill
, New York.
29.
Hohloch
,
M.
,
Zanger
,
J.
,
Widenhorn
,
A.
, and
Aigner
,
M.
,
2010
, “
Experimental Characterization of a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2010-22799.
30.
Capstone Turbine Corporation,
2008
, “
Advanced MicroTurbine System (AMTS): C200 MicroTurbine, Ultra-Low Emissions MicroTurbine
,” Capstone Turbine Corp., Los Angeles, CA, Technical Report No.
DE-FC26-00CH11058
.
You do not currently have access to this content.