Compared to the conventional axisymmetric dual throat nozzle, the axisymmetric divergent dual throat nozzle (ADDTN) can offer larger thrust vector angles. However, the starting problem maybe exists in the ADDTN and results in a huge thrust loss. In this paper, the ADDTN starting problem has been studied by steady and unsteady numerical simulations. The effects of nozzle geometric parameters on internal nozzle performance have been discussed in detail, including cavity divergence angle, cavity convergence angle, cavity length, expansion ratio, rounding radius at the nozzle throat, and rounding radius at the cavity bottom. And, the shock oscillation phenomenon is found inside the recessed cavity in some high-expansion ratio configurations. In addition, a bypass is proposed in this study to solve the ADDTN starting problem. The main numerical simulation results show that the expansion ratio is the most sensitive parameter affecting the starting characteristic of ADDTN, followed by the cavity divergence angle and the cavity length. And, among these parameters, the parameters of cavity convergence angle and rounding radius at the cavity bottom contribute the least to the starting problem. Besides, the ADDTN configurations of large rounding radius at the nozzle throat tend to start.

References

References
1.
Walker
,
S. H.
,
1997
, “
Lessons Learned in the Development of a National Cooperative Program
,”
AIAA
Paper No. 97-3348.
2.
Deere
,
K. A.
,
2003
, “
Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
,”
AIAA
Paper No. 2003-3800.
3.
Anderson
,
C. J.
,
Giuliano
, V
. J.
, and
Wing
,
D. J.
,
1997
, “
Investigation of Hybrid Fluidic/Mechanical Thrust Vectoring for Fixed-Exit Exhaust Nozzles
,”
AIAA
Paper No. 97-3148.
4.
Chiarelli
,
C.
,
Johnsen
,
R. K.
,
Shieh
,
C. F.
, and
Wing
,
D. J.
,
1993
, “
Fluidic Scale Model Multi-Plane Thrust Vector Control Test Results
,”
AIAA
Paper No. 93-2433.
5.
Giuliano
,
V. J.
, and
Wing
,
D. J.
,
1997
, “
Static Investigation of a Fixed-Aperture Exhaust Nozzle Employing Fluidic Injection for Multiaxis Thrust Vector Control
,”
AIAA
Paper No. 97-3149.
6.
Wing
,
D. J.
, and
Giuliano
, V
. J.
,
1997
, “
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
,”
ASME
Paper No. FEDSM97-3228.
7.
Deere
,
K. A.
,
2000
, “
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
,”
AIAA
Paper No. 2000-3598.
8.
Hunter
,
C. A.
, and
Deere
,
K. A.
,
1999
, “
Computational Investigation of Fluidic Counterflow Thrust Vectoring
,”
AIAA
Paper No. 99-2669.
9.
Flamm
,
J. D.
,
1998
, “
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,”
AIAA
Paper No. 98-3255.
10.
Yagle
,
P. J.
,
Miller
,
D. N.
,
Ginn
,
K. B.
, and
Hamstra
,
J. W.
,
2001
, “
Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
502
507
.
11.
Miller
,
D. N.
,
Yagle
,
P. J.
, and
Hamstra
,
J. W.
,
1999
, “
Fluidic Throat Skewing for Thrust Vectoring in Fixed Geometry Nozzles
,”
AIAA
Paper No. 99-0365.
12.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
,
2003
, “
Computational Study of Fluidic Thrust Vectoring Using Separation Control in a Nozzle
,”
AIAA
Paper No. 2003-3803.
13.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
,
2005
, “
A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3502.
14.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2005
, “
An Experimental Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3503.
15.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2006
, “
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2006-3701.
16.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle Concept for Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5085.
17.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Mason
,
M. L.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5084.
18.
Gu
,
R.
,
Xu
,
J.
, and
Guo
,
S.
,
2014
, “
Experimental and Numerical Investigations of a Bypass Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
084501
.
19.
Gu
,
R.
, and
Xu
,
J.
,
2014
, “
Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
014502
.
20.
Gu
,
R.
, and
Xu
,
J.
,
2015
, “
Dynamic Experimental Investigations of a Bypass Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
084501
.
21.
Eri
,
Q.
,
Deng
,
S.-G.
, and
Li
,
J.-J.
,
2011
, “
Flow Characteristic and Starting Method for Divergent Dual Throat Nozzle
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
37
(
3
) pp.
320
324
.
22.
Wang
,
J.
, and
Eri
,
Q.
,
2011
, “
Effect of Injection at Divergent Dual Throat Nozzle
,”
Adv. Aeronaut. Sci. Eng.
,
2
(
3
) pp.
318
382
.
23.
Fan
,
Z.-P.
,
Xu
,
J.-L.
, and
Wang
,
Y.-S.
,
2015
, “
Effects of Downstream Throat on Aerodynamic Performance of Dual Throat Nozzle
,”
J. Aerosp. Power
,
30
(
3
) pp.
580
587
.
24.
Matsuo
,
K.
,
Miyazato
,
Y.
, and
Kim
,
H. D.
,
1999
, “
Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows
,”
Prog. Aerosp. Sci.
,
35
(
1
), pp.
33
100
.
You do not currently have access to this content.