A tool to create parametric aerodynamic shapes using intuitive design variables based on class shape transformation (CST) curves is presented. To enable this, a system has been developed which accepts arbitrary constraints and automatically derives the analytical expressions which describe the corresponding class shape transformation curves. Parametric geometry definitions for fan cowl and intake aero-lines were developed using the generalized method. Computational fluid dynamics (CFD) analysis of the fan cowl shows that despite the simple geometry definition, its performance characteristics are close to what would be expected of a finished design. The intake geometry was generated in a similar way and met the typical performance metrics for conventional intakes. This demonstrates the usefulness of the tool to quickly and robustly produce parametric aero-lines with good aerodynamic properties, using relatively simple intuitive design variables.

References

References
1.
Straathof
,
M. H.
,
Van Tooren
,
M. J.
,
Voskuijl
,
M.
, and
Koren
,
B.
,
2008
, “
Aerodynamic Shape Parameterisation and Optimisation of Novel Configurations
,”
The Aerodynamics of Novel Configurations: Capabilities and Future Requirements, Royal Aeronautical Society Annual Applied Aerodynamics Research Conference
, Royal Aeronautical Society, London, Oct. 27–28, pp.
1
14
.
2.
Anderson
,
G.
,
Aftosmis
,
M.
, and
Nemec
,
M.
,
2012
, “
Constraint-Based Shape Parameterization for Aerodynamic Design
,”
7th International Conference on Computational Fluid Dynamics
, Big Island, HI, Paper No. ICCFD7-2001.
3.
Kulfan
,
B. M.
, and
Bussoletti
,
J. E.
,
2006
, “
Fundamental Parametric Geometry Representations for Aircraft Component Shapes
,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization,
AIAA
Paper No. 2006-6948.
4.
Kulfan
,
B. M.
,
2008
, “
Universal Parametric Geometry Representation Method
,”
J. Aircr.
,
45
(
1
), pp.
142
158
.
5.
Zhu
,
F.
, and
Qin
,
N.
,
2013
, “
Intuitive Class/Shape Function Parameterization for Airfoils
,”
AIAA J.
,
52
(
1
), pp.
17
25
.
6.
Sobieczky
,
H.
,
1999
, “
Parametric Airfoils and Wings
,”
Recent Development of Aerodynamic Design Methodologies
,
Springer
,
Wiesbaden, Germany
, pp.
71
87
.
7.
Vassberg
,
J. C.
,
DeHaan
,
M. A.
,
Rivers
,
S. M.
, and
Wahls
,
R. A.
,
2008
, “
Development of a Common Research Model for Applied CFD Validation Studies
,”
AIAA
Paper No. 2008-6919.
8.
SymPy Development Team
,
2015
, “
SymPy: Python Library for Symbolic Mathematics
,” accessed January 2015, http://www.sympy.org
9.
Newville
,
M.
,
Stensitzki
,
T.
,
Allen
,
D.
, and
Ingargiola
,
A.
,
2014
,
LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python
,
Zenodo
,
Geneva, Switzerland.
10.
Heidebrecht
,
A.
,
Stańkowski
,
T.
, and
MacManus
,
D.
,
2016
, “
Parametric Geometry and Computational Process for Turbofan Nacelles
,”
ASME
Paper No. GT2016-57784.
11.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Scientific Publications
,
Oxford, UK
.
12.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
,
Wiley
,
New York
.
13.
Chandavari
,
V.
, and
Palekar
,
M. S.
,
2014
, “
Diffuser Angle Control to Avoid Flow Separation
,”
Int. J. Tech. Res. Appl.
,
2
(
5
), pp.
16
21
.
14.
ANSYS
,
2014
, “
Fluent User's Guide
,”
ANSYS
,
Canonsburg, PA
.
15.
Christie
,
R.
,
Ramirez
,
S.
, and
MacManus
,
D. G.
,
2014
, “
Aero-Engine Installation Modelling and the Impact on Overall Flight Performance
,” Advanced Aero Concepts, Design and Operations Conference, Royal Aeronautical Society, Bristol, UK, July 22–24.
16.
MIDAP Study Group
,
1979
, “
Guide to in-Flight Thrust Measurement of Turbojets and Fan Engines
,” Agardograph No. 237, Technical Report No. AG-237, AGARD, Neuilly_sur_Seine, France.
17.
ANSYS
,
2014
, “
ICEM CFD 15.0 User's Manual
,” ANSYS, Canonsburg, PA.
18.
Roache
,
P.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Socorro, NM
.
19.
Goldsmith
,
E. L.
, and
Seddon
,
J.
,
1993
,
Practical Intake Aerodynamic Design
,
AIAA Education Series
,
New York
.
20.
Lee
,
K.
,
Lee
,
B.
,
Kang
,
S.
,
Yang
,
S.
, and
Lee
,
D.
,
2010
, “
Inlet Distortion Test With Gas Turbine Engine in the Altitude Engine Test Facility
,”
AIAA
Paper No. 2010-4337.
21.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
22.
Rademakers
,
R. P.
,
Bindl
,
S.
, and
Niehuis
,
R.
,
2016
, “
Effects of Flow Distortions as They Occur in S-Duct Inlets on the Performance and Stability of a Jet Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022605
.
You do not currently have access to this content.