In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling between hydrodynamic, hydrostatic, and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If “noninvasive” forces are generated via lubricant fluid film, “in situ” parameter identification can be carried out, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a “noninvasive calibrated shaker” is troublesome, once several transfer functions among mechanical, hydraulic, and electronic components become necessary. In this framework, the main original contribution of this paper is to show experimentally that the knowledge about the several transfer functions can be bypassed by using output-only identification techniques. This paper links controllable (active) lubrication techniques with operational modal analysis, allowing for in situ parameter identification in rotordynamics, i.e., estimation of damping ratio and natural frequencies. The experimental analysis is carried out on a rigid rotor-level system supported by one single pair of pads. The estimation of damping and natural frequencies is performed using classical experimental modal analysis (EMA) and operational modal analysis (OMA). Very good agreements between the two experimental approaches are found. Maximum values of the main input parameters, namely, servovalve voltage and radial injection pressure, are experimentally found with the objective of defining ranges of noninvasive perturbation forces.

References

References
1.
Janocha
,
H.
,
1999
, “
Neue Aktoren aus Sicht der Mechatronik
,”
Kolloquium Aktoren in Mechatronischen Systemen
,
R.
Nordmann
and
R.
Isermann
, eds.,
Fortschritt-Berichte VDI
, Reihe 8, Nr. 743, pp.
1
13
.
2.
Janocha
,
H.
,
1999
,
Adaptronics and Smart Structures—Basics, Materials, Design and Applications
,
Springer-Verlag
,
Berlin
.
3.
Santos
,
I. F.
,
2011
, “
On the Future of Controllable Fluid-Film Bearings
,”
Mech. Ind.
,
12
, pp.
275
281
.
4.
Santos
,
I. F.
,
2011
, “
Trends in Controllable Oil Film Bearings
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
(IUTAM Bookseries, Vol. 1011), Springer-Verlag, Dordrecht, The Netherlands, pp.
185
199
.
5.
Santos
,
I. F.
,
1994
, “
Design and Evaluation of Two Types of Active Tilting Pad Journal Bearings
,”
The Active Control of Vibration
,
C. R.
Burrows
and
P. S.
Keogh
, eds.,
Mechanical Engineering Publications
,
London
, pp.
79
87
.
6.
Bently
,
D. E.
,
Grant
,
J. W.
, and
Hanifan
,
P. C.
,
2000
, “
Active Controlled Hydrostatic Bearings for a New Generation of Machines
,”
ASME
Paper No. 2000-GT-0354.
7.
Bently
,
D. E.
,
Eldridge
,
T.
,
Jensen
,
J.
, and
Mol
,
P.
,
2001
, “
Externally Pressurized Bearings Allow Rotor Dynamic Optimization
,”
VDI Ber.
,
1640
, pp.
49
62
.
8.
Morosi
,
S.
, and
Santos
,
I. F.
,
2011
, “
Active Lubrication Applied to Radial Gas Journal Bearings. Part 1: Modelling
,”
Tribol. Int.
,
44
, pp.
1949
1958
.
9.
Morosi
,
S.
, and
Santos
,
I. F.
,
2012
, “
Experimental Investigations of Active Air Bearings
,”
ASME
Paper No. GT2012-68766.
10.
Pierart
,
F.
, and
Santos
,
I. F.
,
2015
, “
Steady State Characteristics of an Adjustable Hybrid Gas Bearing—CFD, Modified Reynolds Equation and Experimental Validation
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
7
), pp.
807
822
.
11.
Deckler
,
D. C.
,
Veillette
,
R. J.
,
Braun
,
M. J.
, and
Choy
,
F. K.
,
2000
, “
Simulation and Control of an Active Tilting-Pad Journal Bearing
,”
STLE Tribol. Trans.
,
47
, pp.
440
458
.
12.
Santos
,
I. F.
,
1993
, “
Aktive Kippsegmentlagerung – Theorie und Experiment (Translation: Active Tilting-Pad Journal Bearings – Theory & Experiment)
,”
VDI Fortschritt - Berichte, Reihe 11: Schwingungstechnik, Nr. 189
,
VDI-Verlag
,
Germany
, p.
112
.
13.
Ulbrich
,
H.
, and
Althaus
,
J.
,
1989
, “
Actuator Design for Rotor Control
,” 12th Biennial
ASME
Conference on Vibration and Noise
, Montreal, QC, Canada, Sept. 17–21, pp.
17
21
.
14.
Cai
,
Z.
,
de Queiroz
,
M. S.
, and
Khonsari
,
M. M.
,
2004
, “
On the Active Stabilization of Tilting-Pad Journal Bearings
,”
J. Sound Vib.
,
273
, pp.
421
428
.
15.
Krodkiewski
,
J. M.
, and
Sun
,
L.
,
1998
, “
Modelling of Multi-Bearing Rotor System Incorporating an Active Journal Bearing
,”
J. Sound Vib.
,
210
(
1
), pp.
215
229
.
16.
Sun
,
L.
,
Krodkiewski
,
J. M.
, and
Cen
,
Y.
,
1998
, “
Self-Tuning Adaptive Control of Forced Vibration in Rotor Systems Using an Active Journal Bearing
,”
J. Sound Vib.
,
213
(
1
), pp.
1
14
.
17.
Sun
,
L.
, and
Krodkiewski
,
J. M.
,
2000
, “
Experimental Investigation of Dynamic Properties of an Active Journal Bearing
,”
J. Sound Vib.
,
230
(
1
), pp.
1103
1117
.
18.
Osman
,
T. A.
,
Nada
,
G. S.
, and
Safar
,
Z. S.
,
2001
, “
Static and Dynamic Characteristics of Magnetised Journal Bearings Lubricated With Ferrofluid
,”
Tribol. Int.
,
34
(
6
), pp.
369
380
.
19.
Nikolajsen
,
J. L.
, and
Hoque
,
M. S.
,
1988
, “
An Electroviscous Damper
,”
Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery
,
NASA
Conference Publication, Paper No. 3026.
20.
Goodwin
,
M. J.
,
Boroomand
,
T.
, and
Hooke
,
C. J.
,
1989
, “
Variable Impedance Hydrodynamic Journal Bearings for Controlling Flexible Rotor Vibrations
,”
12th Biennial ASME Conference on Vibration and Noise
, Montreal, QC, Canada, Sept. 17–21, pp.
261
267
.
21.
Santos
,
I. F.
, and
Scalabrin
,
A.
,
2003
, “
Control System Design for Active Lubrication With Theoretical and Experimental Examples
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
75
80
.
22.
Haugaard
,
M. A.
, and
Santos
, I
. F.
,
2010
, “
Elastohydrodynamics Applied to Active Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
132
(
2
), p.
021702
.
23.
Theisen
,
L. R.
,
Niemann
,
H. H.
,
Santos
, I
. F.
,
Galeazzi
,
R.
, and
Blanke
,
M.
,
2016
, “
Modelling and Identification for Control of Gas Bearings
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1150
1170
.
24.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2012
, “
Stability Analysis of an Industrial Gas Compressor Supported by Tilting-Pad Bearings Under Different Lubrication Regimes
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022504
.
25.
Santos
,
I. F.
,
Nicoletti
,
R.
, and
Scalabrin
,
A.
,
2004
, “
Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
888
894
.
26.
Santos
,
I. F.
,
1996
, “
Theoretical and Experimental Identification on the Stiffness and Damping Coefficients of Active-Tilting Pad Journal Bearings
,”
Identification in Engineering Systems
,
M.
Friswell
and
J.
Mottershead
, eds.,
The Cromwell Press
,
Swansea, Great Britain
, pp.
325
334
.
27.
Santos
,
I. F.
, and
Watanabe
,
F. Y.
,
2004
, “
Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication—Part I: Theory
,”
ASME J. Tribol.
,
126
(
1
), pp.
146
155
.
28.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
1999
, “
THD Analysis in Tilting-Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication
,”
ASME J. Tribol.
,
121
, pp.
892
900
.
29.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
2001
, “
Influence of Orifice Distribution on the Thermal and Static Properties of Hybridly Lubricated Bearings
,”
Int. J. Solids Struct.
,
38
, pp.
2069
2081
.
30.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2012
, “
Performance Improvement of Tilting-Pad Journal Bearings by Means of Controllable Lubrication
,”
Mech. Ind.
,
13
, pp.
17
32
.
31.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2013
, “
Steady State Characteristics of a Tilting-Pad Journal Bearing With Controllable Lubrication: Comparison Between Theoretical and Experimental Results
,”
Tribol. Int.
,
58
, pp.
85
97
.
32.
Ulbrich
,
H.
,
1988
, “
New Test Techniques Using Active Magnetic Bearings
,”
First International Symposium on Magnetic Bearings
, pp.
281
288
.
33.
Gähler
,
C.
, and
Förch
,
P.
,
1994
, “
A Precise Magnetic Bearing Exciter for Rotordynamic Experiments
,”
Fourth International Symposium on Magnetic Bearings
,
Zurich
,
Switzerland
, Aug. 23–26, pp.
193
200
.
34.
Gähler
,
C.
,
1998
, “
Rotor Dynamic Testing and Control With Active Magnetic Bearings
,”
Ph.D. thesis
, ETH Zürich, Zürich, Switzerland.
35.
Aenis
,
M.
,
Knoph
,
E.
, and
Nordmann
,
R.
,
2002
, “
Active Magnetic Bearings for the Identification and Fault Diagnosis in Turbomachinery
,”
Mechatronics
,
12
(
8
), pp.
1011
1021
.
36.
Marshall
,
J. T.
,
Kasarda
,
M. E. F.
, and
Imlach
,
J.
,
2003
, “
A Multipoint Measurement Technique for the Enhancement of Force Measurement With Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
90
94
.
37.
Santos
,
I. F.
, and
Varela
,
A. C.
,
2013
, “
Actively-Lubricated Bearings Applied as Calibrated Shakers to Aid Parameter Identification in Rotor Dynamics
,”
ASME
Paper No. GT2013-95674.
38.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2014
, “
Tilting-Pad Journal Bearings With Active Lubrication Applied as Calibrated Shakers: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061010
.
39.
Sichani
,
M. T.
, and
Mahjoob
,
M. J.
,
2007
, “
Operational Modal Analysis Applied to a Horizontal Washing Machine: A Comparative Approach
,”
International Operational Modal Analysis Conference
(
IOMAC
), Copenhagen, Denmark, pp.
1
8
.
40.
Carden
,
P. E.
, and
Lindblad
,
M.
,
2014
, “
Operational Modal Analysis of Torsional Modes in Rotating Machinery
,”
ASME
Paper No. GT2014-26305.
41.
Carden
,
P. E.
, and
Morosi
,
S.
,
2014
, “
Operational Modal Analysis of Lateral Rotordynamic Modes of Rotating Machinery
,”
ASME
Paper No. GT2014-26308.
42.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
,
Research Studies Press
,
London
.
43.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
,
1977
, “
A Method for the Direct Identification of Vibration Parameters From the Free Response
,”
Shock and Vibration Bulletin
, Part 4, Sept., pp.
183
198
.
44.
Juang
,
J.-N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.
45.
van Overschee
,
P.
, and
de Moor
,
B.
,
1996
, Subspace Identification for Linear Systems. Theory, Implementation, Applications,
Kluwer
,
Dordrecht, The Netherlands
.
46.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2000
, “
Modal Identification From Ambient Responses Using Frequency Domain Decomposition
,”
International Modal Analysis Conference
(
IMAC
), San Antonio, TX, Feb. 7–10, pp.
625
630
.
47.
SAS Institute
,
2015
, “
SAS/STAT Software
,” Version 12.1.0,
SAS Institute, Inc.
, Cary, NC.
48.
Salazar
,
J. G.
, and
Santos
,
I. F.
,
2015
, “
Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors Supported by Tilting-Pad Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
10
), pp.
1264
1275
.
You do not currently have access to this content.