This paper systematically presents a complete leakage comparison for various types of wear experienced by labyrinth seals. Labyrinth seals used in turbine engines are designed to work at a clearance during steady-state engine operations. The tooth tip rubs the stator and wears either itself or the stator surface during transient operations, depending on the material properties of the tooth and stator. Any type of wear that increases clearance or deforms the tooth tip will cause permanent and unpredictable leakage degradation. This negatively affects the engine's overall efficiency, durability, and life. The teeth have been reported to wear into a mushroom profile or into a rounded profile. A rub-groove on the opposing surface may form in several shapes. Based on a literature survey, five rub-groove shapes are considered in this work. They are rectangle, trapezoid (isosceles and acute), triangle, and ellipse. In this work, leakage degradation due to wear is numerically quantified for both mushroomed and rounded tooth wear profiles. It also includes analyses on rounded teeth with the formation of five rub-groove shapes. All parameters are analyzed at various operating conditions (clearance, pressure ratio, number of teeth, and rotor speed). Computational fluid dynamics (CFD) analyses are carried out by employing compressible turbulent flow in a 2D axisymmetrical coordinate system. CFD analyses show that the following tooth-wear conditions affect leakage from least to greatest: unworn, rounded, and mushroomed. These are for an unworn flat stator. It is also observed that rub-groove shapes considerably affect the leakage depending on the clearance. Leakage increases with the following groove profiles: triangular, rectangular, acute trapezoidal, isosceles trapezoidal, and elliptical. The results show that any type of labyrinth seal wear has significant effects on leakage. Therefore, leakage degradation due to wear should be considered during the engine design phase.

References

References
1.
Lattime
,
S. C.
, and
Steinetz
,
B. M.
,
2002
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
NASA
Glenn Research Center, Cleveland, OH, Report No. NASA-TM-2002-211794.
2.
Ludwig
,
L. P.
, and
Johnson
,
R. L.
,
1974
, “
Sealing Technology for Aircraft Gas Turbine Engines
,”
AIAA
Paper No. 74-1188.
3.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
NASA
Glenn Research Center, Cleveland, OH, Report No. NASA-TM 2006-214341.
4.
Zimmerman
,
H.
,
Kammerer
,
A.
, and
Wolff
,
K. H.
,
1994
, “
Performance of Worn Labyrinth Seals
,”
ASME
Paper No. 94-GT-131.
5.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
, and
Kowalczyk
,
M.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.
6.
Neef
,
M.
,
Sulda
,
E.
,
Sürken
,
N.
, and
Walkenhorst
,
J.
,
2006
, “
Design Features and Performance Details of Brush Seals for Turbine Applications
,”
ASME
Paper No. GT2006-90404.
7.
Wilson
,
S.
,
2007
, “
Ensuring Tight Seals
,” Technical Report, v. 2,
Sulzer Tech. Rev.
,
89
(
2
), pp.
23
25
.
8.
Herrmann
,
N.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines
,”
ASME
Paper No. GT2013-95424.
9.
Team CJJ
,
2014
, “
Combined Cycle Journal
,” CJJ ONsite, Las Vegas, NV, accessed Oct. 3, 2015, http://www.ccj-online.com/501fg-users-benefit-from-presentations-by-non-oem-equipmentservices-providers-1-of-2/
10.
Pychynski
,
T.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2016
, “
Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062501
.
11.
Bill
,
R. C.
, and
Shiembob
,
L. T.
,
1977
, “
Friction and Wear of Sintered Fibermetal Abradable Seal Materials
,”
ASME J. Lubr. Technol.
, pp.
421
427
.
12.
Chougule
,
H. H.
,
Ramerth
,
D.
,
Ramchandran
,
D.
, and
Kandala
,
R.
,
2006
, “
Numerical Investigation of Worn Labyrinth Seals
,”
ASME
Paper No. GT2006-90690.
13.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of The High Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbo-Engine Application
,”
Wear
,
316
(1–2), pp.
109
118
.
14.
Xu
,
J.
,
2006
, “
Effects of Operating Damage of Labyrinth Seal on Seal Leakage and Wheelspace Hot Gas Ingress
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.
15.
Yan
,
X.
,
Lijie
,
L.
,
Li
,
J.
, and
Zhenping
,
F.
,
2014
, “
Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041901
.
16.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p. 032503.
17.
Keller
,
C.
,
1937
, “
Flow Through Labyrinth Glands
,”
Power Plant Eng.
,
41
(
4
), pp.
243
245
.
18.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
1998
, “
Visualization and Measurements of Rub-Groove Leakage Effects on Straight-Through Labyrinth Seals
,”
ASME
Paper No. 98-GT-506.
19.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
2001
, “
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
604
611
.
20.
Xu
,
J.
,
Ambrosia
,
M. S.
, and
Rhode
,
D. L.
,
2005
, “
Effect of Rub-Groove Wall Angle on the Leakage of Abradable Stepped Labyrinth Seals
,”
Tribol. Trans.
,
48
(
4
), pp.
443
449
.
21.
ESDU
,
2009
, “
Labyrinth Seal Flow
,” The Institution of Mechanical Engineers, Bracknell, UK, Standard No. ESDU 09004.
22.
Rhode
,
D. L.
, and
Adams
,
R. G.
,
2001
, “
Computed Effect of Rub-Groove Size on Stepped Labyrinth Seal Performance
,”
Tribol. Trans.
,
44
(
4
), pp.
523
532
.
23.
Rhode
,
D. L.
, and
Adams
,
R. G.
,
2004
, “
Rub-Groove Width and Depth Effects on Flow Predictions for Straight-Through Labyrinth Seals
,”
ASME J. Tribol.
,
126
(
4
), pp.
781
787
.
24.
Pychynski
,
T.
,
Dullenkopf
,
K.
,
Bauer
,
H.-J.
, and
Mikut
,
R.
,
2010
, “
Modelling The Labyrinth Seal Discharge Coefficient Using Data Mining Methods
,”
ASME
Paper No. GT2010-22661.
25.
Wang
,
W. Z.
,
Liu
,
Y. Z.
,
Meng
,
G.
, and
Jiang
,
P. N.
,
2010
, “
Influence of Rub Groove on Rotordynamics Associated With Leakage Air Flow Through a Labyrinth Seal
,”
J. Mech. Sci. Tech.
,
24
(
8
), pp.
1573
1581
.
26.
Pandit
,
R. K.
, and
Innocenti
,
L.
,
2013
, “
Computational Analysis of Abradable Seal—Part 1
,”
ASME
Paper No. GT2013-94085.
27.
Denecke
,
J.
,
Schramm
,
V.
,
Kim
,
V.
, and
Wittig
,
S.
,
2003
, “
Influence of Rub-Grooves on Labyrinth Seal Leakage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
387
393
.
28.
Innocenti
,
L.
,
Recupero
,
S.
,
Pandit
,
R. K.
, and
Sheng
,
N.
,
2013
, “
Experimental Analysis of Abradable Labyrinth Seal Leakage With Simulated Groove—Part 2
,”
ASME
Paper No. GT2013-95646.
29.
Collins
,
D.
,
Teixeira
,
J.
, and
Crudgington
,
P.
,
2008
, “
The Degradation of Abradable Honeycomb Labyrinth Seal Performance Due to Wear
,”
Sealing Technol.
, 2008(
8
), pp.
7
10
.
30.
Nayak
,
K. C.
, and
Dutta
,
P.
,
2016
, “
Effect of Rub-Grooves on Leakage and Windage Heating in Straight-Through Labyrinth Seals
,”
ASME J. Tribol.
,
138
(
2
), p.
022201
.
31.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Gezer
,
K.
,
Kocagül
,
M.
,
Arıcan
,
E.
, and
Ozmusul
,
M. S.
,
2016
, “
Leakage Degradation of Straight Labyrinth Seal Due to Wear of Round Tooth Tip and Acute Trapezoidal Rub-Groove
,”
ASME
Paper No. GT2016-57928.
32.
Ansys
, 2013, “Ansys-Fluent User's Guide, Release 15,”” Ansys, Inc., Canonsburg, PA.
33.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
34.
Wittig
,
S.
,
Jacobsen
,
K.
,
Schelling
,
U.
, and
Kim
,
S.
,
1988
, “
Heat Transfer in Stepped Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
110
(
1
), pp.
63
69
.
You do not currently have access to this content.