In the field of turbomachinery, great efforts are made to enhance computational tools to obtain reliable predictions of the vibrational behavior of friction-damped bladed disks. As a trade-off between computational burden and level of simplification, numerous methods were developed to reduce the nonlinear systems dimension. Using component mode synthesis methods (CMS), one is capable to describe the systems motion by interface and modal coordinates. Subsequently or alternatively, the dynamic compliance matrix can be evaluated efficiently by means of modal superposition to avoid the inversion of the dynamic stiffness matrix. Only the equations corresponding to the degrees-of-freedom (DOF) subject to localized nonlinear contact forces need to be solved simultaneously, whereas the solution of the linear DOF is obtained by exploiting the algebraic character of the set of equations. In this paper, an approach is presented to account for rotational speed-dependent stiffness in the subset of nonlinear DOF without the need to re-evaluate the associated eigenvalue problem (EVP) when rotational speed is changed. This is done by means of a Taylor series expansion of the eigenvalues and eigenvectors used for the modal superposition to reconstruct the dynamic compliance matrix. In the context of forced response predictions of friction-damped blisks, the expansion is performed up to different order for a simplified blisk model with nonlinear contact interfaces. The results are compared to the solution obtained by direct evaluation of the EVP at selected rotational speeds and the solution when dynamic compliance matrix is built up by direct inversion of the dynamic stiffness matrix. Finally, the proposed methods computational performance is analyzed.

References

References
1.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.
2.
Craig
,
R. R.
, and
Bampton
,
M. C.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
3.
Craig
,
R. R.
, and
Chang
,
C.-J.
,
1977
, “
On the Use of Attachment Modes in Substructure Coupling for Dynamic Analysis
,”
AIAA/ASME
18th Structures, Structural Dynamics and Materials Conference, San Diego, CA, Mar. 21–23, Paper No. 77-405.
4.
Craig
,
R. R.
,
2000
, “
Coupling of Substructures for Dynamic Analysis: An Overview
,”
AIAA
Paper No. 2000-1573.
5.
Tran
,
D. M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.
6.
Rixen
,
D. J.
,
2004
, “
A Dual Craig–Bampton Method for Dynamic Substructuring
,”
J. Comput. Appl. Math.
,
168
(
1–2
), pp.
383
391
.
7.
Batailly
,
A.
,
Legrand
,
M.
,
Cartraud
,
P.
,
Pierre
,
C.
, and
Lombard
,
J.-P.
,
2007
, “
Study of Component Mode Synthesis Methods in a Rotor–Stator Interaction Case
,”
ASME
Paper No. DETC2007-34781.
8.
Donders
,
S.
,
Pluymers
,
B.
,
Ragnarsson
,
P.
,
Hadjit
,
R.
, and
Desmet
,
W.
,
2010
, “
The Wave-Based Substructuring Approach for the Efficient Description of Interface Dynamics in Substructuring
,”
J. Sound Vib.
,
329
(
8
), pp.
1062
1080
.
9.
Hohl
,
A.
,
Siewert
,
C.
,
Panning
,
L.
, and
Wallaschek
,
J.
,
2009
, “
A Substructure Based Reduced Order Model for Mistuned Bladed Disks
,”
ASME
Paper No. DETC2009-87459.
10.
Urabe
,
M.
,
1965
, “
Galerkin's Procedure for Nonlinear Periodic Systems
,”
Arch. Ration. Mech. Anal.
,
20
(
2
), pp.
120
152
.
11.
Ling
,
F. H.
, and
Wu
,
X. X.
,
1987
, “
Fast Galerkin Method and Its Application to Determine Periodic Solutions of Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
22
(
2
), pp.
89
98
.
12.
Groll
,
G. V.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
13.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
14.
Siewert
,
C.
,
Panning
,
L.
, and
Wallaschek
,
J.
,
2009
, “
Nonlinear Multiharmonic Vibrations of Coupled Turbine Bladings
,”
SIRM 2009—8th International Conference on Vibrations in Rotating Machines
, Vienna, Austria, Feb. 23–25, Paper-ID No. 19.
15.
Petrov
,
E. P.
,
2010
, “
A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces
,”
ASME
Paper No. GT2010-23295.
16.
Rixen
,
D.
,
2001
, “
Generalized Mode Acceleration Methods and Modal Truncation Augmentation
,”
AIAA
Paper No. 2001-1300.
17.
Besselink
,
B.
,
Tabak
,
U.
,
Lutowska
,
A.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
,
Rixen
,
D. J.
,
Hochstenbach
,
M. E.
, and
Schilders
,
W.
,
2013
, “
A Comparison of Model Reduction Techniques From Structural Dynamics, Numerical Mathematics and Systems and Control
,”
J. Sound Vib.
,
332
(
19
), pp.
4403
4422
.
18.
Li
,
L.
,
Hu
,
Y.
,
Wang
,
X.
, and
,
L.
,
2014
, “
A Hybrid Expansion Method for Frequency Response Functions of Non-Proportionally Damped Systems
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
31
41
.
19.
Poudou
,
O.
, and
Pierre
,
C.
,
2003
, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping
,”
AIAA
Paper No. 2003-1411.
20.
Seydel
,
R.
,
2010
,
Practical Bifurcation and Stability Analysis
(Interdisciplinary Applied Mathematics),
3rd ed.
, Vol.
5
,
Springer
,
New York
.
21.
Balmes
,
E.
,
1996
, “
Parametric Families of Reduced Finite Element Models. Theory and Applications
,”
Mech. Syst. Signal Process
.,
10
(
4
), pp.
381
394
.
22.
Sternchüss
,
A.
, and
Balmes
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disk Models With Variable Rotation Speeds
,”
International Conference on Advanced Acoustics and Vibration
(
ISMA
), pp.
3925
3939
.https://hal.archives-ouvertes.fr/hal-00266394/
23.
Sternchüss
,
A.
,
2009
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,”
Ph.D. thesis
, Ecole Centrale Paris, Paris, France.https://tel.archives-ouvertes.fr/tel-00366252/
24.
Legrand
,
M.
,
Batailly
,
A.
,
Magnain
,
B.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2012
, “
Full Three-Dimensional Investigation of Structural Contact Interactions in Turbomachines
,”
J. Sound Vib.
,
331
(
11
), pp.
2578
2601
.
25.
Gautschi
,
W.
,
1962
, “
On Inverses of Vandermonde and Confluent Vandermonde Matrices
,”
Numerische Math.
,
4
(
1
), pp.
117
123
.
26.
Neidinger
,
R. D.
,
2010
, “
Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming
,”
SIAM Rev.
,
52
(
3
), pp.
545
563
.
27.
Forth
,
S. A.
,
2006
, “
An Efficient Overloaded Implementation of Forward Mode Automatic Differentiation in MATLAB
,”
ACM Trans. Math. Software
,
32
(
2
), pp.
195
222
.
28.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.
29.
Laursen
,
T. A.
, and
Maker
,
B. N.
,
1995
, “
An Augmented Lagrangian Quasi-Newton Solver for Constrained Nonlinear Finite Element Applications
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3571
3590
.
30.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
AIAA J.
,
6
(
12
), pp.
2426
2429
.
31.
Plaut
,
R. H.
, and
Huseyin
,
K.
,
1973
, “
Derivatives of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems
,”
AIAA J.
,
11
(
2
), pp.
250
251
.
32.
Van der Aa
,
N. P.
,
Ter Morsche
,
H. G.
, and
Mattheij
,
R. R. M.
,
2007
, “
Computation of Eigenvalue and Eigenvector Derivatives for a General Complex-Valued Eigensystem
,”
Electron. J. Linear Algebra
,
16
, pp.
300
314
.http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol16_pp300-314.pdf
33.
Nelson
,
R. B.
,
1976
, “
Simplified Calculation of Eigenvector Derivatives
,”
AIAA J.
,
14
(
9
), pp.
1201
1205
.
34.
Friswell
,
M. I.
,
1995
, “
Calculation of Second and Higher Order Eigenvector Derivatives
,”
J. Guid., Control, Dyn.
,
18
(
4
), pp.
919
921
.
You do not currently have access to this content.