A simulation environment allowing steady state and transient modeling is used for assessing several gas turbine based cycles proposed for solar hybridization. First, representative open cycle gas turbine configurations, namely, (a) single shaft (SS), (b) recuperated single-shaft, (c) twin shaft (TS), and (d) two-spool three-shaft, intercooled, recuperated, are evaluated. The importance of design point selection in terms of solar share value is highlighted. Solar steam injection gas turbine cycle (STIG) alternatives, namely, solar steam only and solar/fuel gas steam, are then assessed. Finally, the concept of a dual fluid receiver (DFR) for exploiting the rejected solar power by producing steam during sunny hours with high irradiation is demonstrated. The effects of hybridization on performance and operability are established and evaluated. Solarization effect on performance is estimated in terms of annual produced power and fossil fuel savings. The results indicate that the spool arrangement affects the suitability of a gas turbine for hybridization. Recuperated configurations performed better for the design constrains imposed by current technology solar parts. Solar steam injection is a promising solution for retrofitted fuel-only and conventional STIG engines.

References

References
1.
Taylor
,
P.
,
Cazzola
,
P.
,
Cuenot
,
F.
,
Chiavari
,
J.
,
Elzinga
,
D.
,
Fulton
,
L.
,
Gibson
,
B.
,
Kerr
,
T.
,
Lee
,
S.
,
Remme
,
U.
,
Tam
,
C.
,
Taylor
,
M.
,
Tepes
,
P.
, and
Trudeau
,
N.
,
2010
,
Energy Technology Perspectives—Part I: Technology and the Global Energy Economy to 2050
,
International Energy Agency
,
Paris, France
.
2.
Sandoz
,
R.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
Air-Based Bottoming-Cycles for Water-Free Hybrid Solar Gas-Turbine Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101701
.
3.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2012
, “
Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092301
.
4.
EU Commission
,
2005
,
SOLGATE: Solar Hybrid Gas Turbine Electric Power System
,
EU Commission, Directorate-General for Research and Innovation
, Luxembourg.
5.
Quero
,
M.
,
Korzynietz
,
R.
,
Ebert
,
M.
,
Jiménez
,
A. A.
,
del Río
,
A.
, and
Brioso
,
J. A.
,
2014
, “
Solugas–Operation Experience of the First Solar Hybrid Gas Turbine System at MW Scale
,”
Energy Procedia
,
49
, pp.
1820
1830
.
6.
Heller
,
P.
,
2011
, “
SOLHYCO_Final Public Report
,” Report No. SES6-CT-2005-019830.
7.
OMSoP
, 2016, “Optimised Microturbine Solar Power system”, OMSoP, London, UK, accessed, Dec. 20, 2015, https://omsop.serverdata.net/pages/home.aspx
8.
Barigozzi
,
G.
,
Bonetti
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Thermal Performance Prediction of a Solar Hybrid Gas Turbine
,”
Sol. Energy
,
86
(
7
), pp.
2116
2127
.
9.
Barigozzi
,
G.
,
Bonetti
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Solar Hybrid Combined Cycle Performance Prediction: Influence of GT Model and Spool Arrangement
,”
ASME
Paper No. GT2012-68881.
10.
Aichmayer
,
L.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
Micro Gas-Turbine Design for Small-Scale Hybrid Solar Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
113001
.
11.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
A Comparative Thermoeconomic Study of Hybrid Solar Gas-Turbine Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011801
.
12.
Spelling
,
J.
,
Favrat
,
D.
,
Martin
,
A.
, and
Augsburger
,
G.
,
2012
, “
Thermoeconomic Optimization of a Combined-Cycle Solar Tower Power Plant
,”
Energy
,
41
(
1
), pp.
113
120
.
13.
Livshits
,
M.
, and
Kribus
,
A.
,
2012
, “
Performance and Water Consumption of the Solar Steam-Injection Gas Turbine Cycle
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011020
.
14.
Kurzke
,
J.
,
1992
, “
Calculation of Installation Effects Within Performance Computer Programs
,” Steady and Transient Performance Prediction of Gas Turbine Engines, AGARD LS-183, NATO, Neuilly sur Seine, France.
15.
Kitzmiller
,
K.
, and
Miller
,
F.
,
2012
, “
Effect of Variable Guide Vanes and Natural Gas Hybridization for Accommodating Fluctuations in Solar Input to a Gas Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041008
.
16.
Empresarios Agrupados Internacional
, 2016, “
ecosimpro/proosis System Modelling and Simulation Toolkits and Services
,” EA Internacional, Madrid, Spain, accessed, Nov. 05, 2015, http://www.proosis.com/
17.
Alexiou
,
A.
,
2014
,
Introduction to Gas Turbine Modelling With proosis
,
2nd ed.
,
Empresarios Agrupados Internacional
,
Madrid, Spain.
18.
Kalathakis
,
C.
,
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Alexiou
,
A.
, and
Mathioudakis
,
K.
,
2017
, “
Concentrated Solar Power Components Toolbox in an Object Oriented Environment
,”
Simul. Modell. Pract. Theory
,
70
, pp.
21
35
.
19.
Meteotest
, 2016, “Meteonorm Software,” Meteotest, Bern, Switzerland, accessed, Feb. 08, 2016, http://www.meteonorm.com/
20.
Ávila-Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.
21.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
,
2005
, European Concentrated Solar Thermal Road-Mapping, DLR Group, Köln, Germany.
22.
Mattingly
,
J. D.
, and
Heiser
,
W. H.
,
2006
,
Aircraft Engine Design
,
2nd ed.
,
AIAA Education Series
, Reston, VA.
23.
Kurzke
,
J.
,
2002
, “
Performance Modelling Methodology: Efficiency Definitions for Cooled Single and Multistage Turbines
,”
ASME
Paper No. GT-2002-30497.
24.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
Blackwell Science
, Oxford, UK.
25.
Mills
,
A.
,
1995
,
Heat and Mass Transfer
,
Irwin, Chicago, IL
.
26.
Zarza
,
E.
,
Rojas
,
M. E.
,
González
,
L.
,
Caballero
,
J. M.
, and
Rueda
,
F.
,
2006
, “
INDITEP: The First Pre-Commercial DSG Solar Power Plant
,”
Sol. Energy
,
80
(
10
), pp.
1270
1276
.
27.
Bürkle, D., and Krüger, D. R., 2012, “First solar thermal power plant in Southeast Asia is fully operational,” DLR Group, Köln, Germany, accessed, Oct. 10, 2016, http://www.dlr.de/dlr/presse/en/desktopdefault.aspx/tabid-10309/472_read-2343/year-2012/#/gallery/4361
28.
Plotkin
,
A. R.
,
Toupin
,
K. M.
,
Gillum
,
C. B.
,
Rancatore
,
R. J.
,
Yang
,
T.
, and
Mier
,
D.
,
2011
, “
Solar Receiver Steam Generator Design for the Ivanpah Solar Electric Generating System
,”
ASME
Paper No. POWER2011-55248.
29.
Mathioudakis
,
K.
,
2002
, “
Evaluation of Steam and Water Injection Effects on Gas Turbine Operation Using Explicit Analytical Relations
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
6
), pp.
419
431
.
30.
Kosla
,
L.
,
Hamill
,
J.
, and
Strothers
,
J.
,
1983
, “
Inject Steam in a Gas Turbine-But Not Just for NOx Control
,”
Power
, 2.
31.
Koivu
,
T. G.
,
2007
, “
New Technique for Steam Injection (STIG) Using Once Through Steam Generator (GTI/OTSG) Heat Recovery to Improve Operational Flexibility and Cost Performance
,”
17th Symposium on Industrial Applications of Gas Turbines
, pp.
4
32
.
32.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2010
, “
Evaluation of Water Injection Effect on Compressor and Engine Performance and Operability
,”
Appl. Energy
,
87
(
4
), pp.
1207
1216
.
33.
Kearney
,
D.
,
1989
, “
Solar Electric Generating Stations (SEGS)
,”
IEEE Power Eng. Rev.
,
9
(
8
), pp.
4
8
.
34.
Takeda
,
T.
,
Araki
,
H.
,
Iwai
,
Y.
,
Morisaki
,
T.
, and
Sato
,
K.
,
2014
, “
Test Results of 40MW-Class Advanced Humid Air Turbine and Exhaust Gas Water Recovery System
,”
ASME
Paper No. GT2014-27281.
You do not currently have access to this content.