Thermoacoustic instabilities pose a major threat to modern gas turbines. The use of acoustic dampers, like Helmholtz resonators, has proven useful for the mitigation of such instabilities. However, assessing the effect of acoustic dampers on thermoacoustic modes in annular combustion chambers remains an intricate task. This results from the implicit nature of the thermoacoustic Helmholtz equation associated with the high number of possible parameter values for the positioning of the dampers and their impedance design. In the present work, the principal challenges of the effective placement and the design of the impedance of acoustic dampers in annular chambers are discussed. This includes the choice of an appropriate objective function for the optimization, the combinatorial challenges when dealing with different possible damper arrangements, and the numerical complexities when using the thermoacoustic Helmholtz equation to approach this issue. As a key aspect, the paper proposes a new adjoint-based approach to tackle these problems. The new algorithm establishes algebraic models that predict the effect of acoustic dampers on the growth rates of the thermoacoustic modes. The theory is exemplified on the basis of a generic annular combustor model with 12 burners.

References

References
1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines
(Progress in Astronautics and Aeronautics), Vol.
210
,
AIAA, Inc
, Reston, VA.
2.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.
3.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow Turbulence Combust.
,
88
(1), pp.
191
206
.
4.
Poinsot
,
T.
,
2013
, “
Simulation Methodologies and Open Questions for Acoustic Combustion Instability Studies
,”
Annual Research Briefs
, Center for Turbulence Research, Stanford University, pp.
179
188
.
5.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
6.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2008
, “
Prediction of Thermoacoustic Instability in Combustion Chamber Equipped With Passive Dampers
,”
ASME
Paper No. GT-2008-51387.
7.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Modelling of Circumferential Modal Coupling due to Helmholtz Resonators
,”
ASME
Paper No. GT2003-38168.
8.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2014
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.
9.
Schuermans
,
B.
,
Bothien
,
M.
,
Maurer
,
M.
, and
Bunkute
,
B.
,
2015
, “
Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/GT24 Reheat Combustors
,”
ASME
Paper No. GT2015-42287.
10.
Fernández
,
F. M.
,
2000
,
Introduction to Perturbation Theory in Quantum Mechanics
,
1st ed.
,
CRC Press
,
Boca Raton, FL
.
11.
Kato
,
T.
,
1980
, “
Perturbation Theory for Linear Operators
,”
Grundlehren der Mathematischen Wissenschaften
, Vol.
132
,
Springer-Verlag
,
Berlin, Germany
.
12.
Juniper
,
M.
,
Magri
,
L.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2014
, “
Sensitivity Analysis of Thermo-Acoustic Eigenproblems With Adjoint Methods
,”
Summer Program 2014
, Center for Turbulence Research, Stanford University, pp.
189
198
.
13.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Ann. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.
14.
Miller
,
P. D.
,
2006
,
Applied Asymptotic Analysis
(Graduate Studies in Mathematics), Vol.
75
,
American Mathematical Society
,
Providence, RI
.
15.
Camporeale
,
S. M.
,
Forte
,
A.
,
Fortunato
,
B.
,
Mastrovito
,
M.
, and
Ferrante
,
A.
,
2004
, “
Numerical Simulation of the Acoustic Pressure Field in an Annular Combustion Chamber With Helmholtz Resonators
,”
ASME
Paper No. GT2004-54139.
16.
Boyd
,
J. P.
,
1999
, “
The Devils Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series
,”
Acta Applicandae Math.
,
56
(
1
), pp.
1
98
.
17.
Hansen
,
N.
,
2006
, “
The CMA Evolution Strategy: A Comparing Review
,”
StuddFuzz
,
192
, pp.
75
102
.
18.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT2002-30064.
19.
Rienstra
,
S. W.
,
2006
, “
Impedance Models in Time Domain Including the Extended Helmholtz Resonator Model
,”
AIAA
Paper No. 2627.
20.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Model.
,
15
(
5
), pp.
585
606
.
21.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2015
, “
Efficient Computation of Thermoacoustic Modes in Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME
Paper No. GT2015-43476.
22.
Ndiaye
,
A.
,
Bauerheim
,
M.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities in a Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133.
You do not currently have access to this content.