In this paper, a novel and efficient modal analysis method is raised to work on blisk structures based on mixed-dimension finite element model (MDFEM). The blade and the disk are modeled separately. The blade model is figured by 3D solid elements considering its complex configuration and its degrees-of-freedom (DOFs) are condensed by dynamic substructural method. Meanwhile, the disk is structured by 2D axisymmetric element developed specially in this paper. The DOFs of entire blisk are tremendously reduced by this modeling approach. The key idea of this method is derivation of displacement compatibility to different dimensional models. Mechanical energy equivalence and summation further contribute to the model synthesis and modal analysis of blade and disk. This method has been successfully applied on the modal analysis of blisk structures in turbine, which reveals its effectiveness and proves that this method reduces the computational time expenses while maintaining the precision performances of full 3D model. Though there is limitation that structure should have proper coverage of blades, this method is still feasible for most blisks in engineering practice.

References

References
1.
Genta
,
G.
,
2007
,
Dynamics of Rotating Systems
,
Springer Science & Business Media
, New York.
2.
Mota Soares
,
C. A.
, and
Petyt
,
M.
,
1978
, “
Finite Element Dynamic Analysis of Practical Discs
,”
J. Sound Vib.
,
61
(
4
), pp.
547
560
.
3.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.
4.
Wang
,
W.-L.
,
Zhang
,
J.
, and
Chen
,
X. J.
,
1988
, “
Natural Mode Analysis of Blades-Disk Coupled Systems—Modal Synthesis of Symmetric Structure With C-N Group
,”
Acta Mech. Solida Sin.
,
1
, pp.
61
71
.
5.
Berthillier
,
M.
,
Dhainaut
,
M.
,
Burgaud
,
F.
, and
Garnier
,
V.
,
1997
, “
A Numerical Method for the Prediction of Bladed Disk Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
404
410
.
6.
Tang
,
J.
, and
Wang
,
K. W.
,
1999
, “
Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
379
390
.
7.
Tang
,
G.
,
Ding
,
J.
, and
Xu
,
X.
,
2000
, “
A New Method for Stress Analysis of a Cyclically Symmetric Structure
,”
Appl. Math. Mech.
,
21
(
1
), pp.
89
96
.
8.
Vargiu
,
P.
,
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.
9.
Krack
,
M.
,
Scheidt
,
P. V.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2013
, “
Reduced Order Modeling Based on Complex Nonlinear Modal Analysis and Its Application to Bladed Disks With Shroud Contact
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102502
.
10.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2008
, “
Nonlinear Modal Analysis and Energy Localization in a Bladed Disk Assembly
,”
ASME
Paper No. GT2008-51388.
11.
Stephenson
,
R.
, and
Rouch
,
K.
,
1993
, “
Modeling Rotating Shafts Using Axisymmetric Solid Finite Elements With Matrix Reduction
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
484
489
.
12.
Stephenson
,
R.
,
Rouch
,
K.
, and
Arora
,
R.
,
1989
, “
Modelling of Rotors With Axisymmetric Solid Harmonic Elements
,”
J. Sound Vib.
,
131
(
3
), pp.
431
443
.
13.
Loewy
,
R. G.
, and
Khadert
,
N.
,
1984
, “
Structural Dynamics of Rotating Bladed-Disk Assemblies Coupled With Flexible Shaft Motions
,”
AIAA J.
,
22
(
9
), pp.
1319
1327
.
14.
Zhang
,
W.
,
Wang
,
W.
,
Wang
,
H.
, and
Tang
,
J.
,
1994
, “
A Finite Element Approach to the Analysis of Rotating Bladed-Disk Assemblies Coupled With Flexible Shaft
,”
ASME
Paper No. 94-GT-107.
15.
Shen
,
I. Y.
, and
Ku
,
C. P. R.
,
1997
, “
A Nonclassical Vibration Analysis of a Multiple Rotating Disk and Spindle Assembly
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
165
174
.
16.
Lagrange
,
J. L.
,
1853
,
Mécanique Analytique
,
Mallet-Bachelier
, Paris.
17.
Bailey
,
C. D.
,
1975
, “
Application of Hamilton's Law of Varying Action
,”
AIAA J.
,
13
(
9
), pp.
1154
1157
.
18.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
, New York.
19.
Danielson
,
K. T.
, and
Noor
,
A. K.
,
1997
, “
Three-Dimensional Finite Element Analysis in Cylindrical Coordinates for Nonlinear Solid Mechanics Problems
,”
Finite Elem. Anal. Des.
,
27
(
3
), pp.
225
249
.
20.
Chacour
,
S.
,
1970
, “
A High Precision Axisymmetric Triangular Element Used in the Analysis of Hydraulic Turbine Components
,”
J. Basic Eng.
,
92
(
4
), pp.
819
826
.
21.
Lai
,
J. Y.
, and
Booker
,
J. R.
,
1991
, “
Application of Discrete Fourier Series to the Finite Element Stress Analysis of Axi-Symmetric Solids
,”
Int. J. Numer. Methods Eng.
,
31
(
4
), pp.
619
647
.
22.
Weissman
,
S. L.
, and
Taylor
,
R. L.
,
1991
, “
Four-Node Axisymmetric Element Based Upon the Hellinger-Reissner Functional
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
1
), pp.
39
55
.
23.
Swaddiwudhipong
,
S.
,
Tho
,
K. K.
,
Hua
,
J.
, and
Liu
,
Z. S.
,
2006
, “
Mechanism-Based Strain Gradient Plasticity in C 0 Axisymmetric Element
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1117
1130
.
24.
Rauchs
,
G.
,
2016
, “
Direct-Differentiation-Based Sensitivity Analysis of an Axisymmetric Finite Element Formulation Including Torsion
,”
Finite Elem. Anal. Des.
,
109
, pp.
65
72
.
25.
Logan
,
D. L.
,
2011
, A First Course in the Finite Element Method, Cengage Learning, Boston, MA.
26.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
27.
Bampton
,
M. C.
, and
Craig
,
R. R.
, Jr
.,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
28.
Glasgow
,
D. A.
, and
Nelson
,
H. D.
,
1980
, “
Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,”
ASME J. Mech. Des.
,
102
(
2
), pp.
352
359
.
29.
Craig
,
R. R.
, Jr.
,
1995
,
Structural Dynamics: An Introduction to Computer Methods
,
Society for Experimental Mechanics
,
Bethel, CT
, p.
527
.
30.
Bathe
,
K. J.
,
Ramm
,
E.
, and
Wilson
,
E. L.
,
1975
, “
Finite Element Formulations for Large Deformation Dynamic Analysis
,”
Int. J. Numer. Methods Eng.
,
9
(
2
), pp.
353
386
.
31.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: Solid Mechanics
,
Butterworth-Heinemann
,
Waltham, MA
.
You do not currently have access to this content.