Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the microparticles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in the compressor performance. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0.15–1.50 μm) in a transonic axial compressor stage, carried out by means of a commercial computational fluid dynamic code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by the flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. A particular computational strategy is adopted in order to take into account the presence of two subsequent annular cascades (rotor and stator) in the case of particle ingestion. The proposed strategy allows the evaluation of particle deposition in an axial compressor stage, thanks to its capability of accounting for rotor/stator interaction. NASA Stage 37 is used as a case study for the numerical investigation. The compressor stage numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in the literature. The blade zones affected by the particle impact and the kinematic characteristics of the impact of micrometric and submicrometric particles with the blade surface are shown. Both blade zones affected by the particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability, adopted from the literature. The sticking probability links the kinematic characteristics of particle impact on the blade with fouling phenomenon. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side of rotor blade and stator vane. Both the rotor blade and stator vane suction side are only affected by the impact of smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, shock waves, and tip leakage vortex, strongly influence the impact location of the particles. The kinematic analysis shows a high tendency of particle adhesion on the suction side of the rotor blade, especially for particles with a diameter equal to 0.15 μm.

References

References
1.
Wilcox
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2011
, “
Successful Selection and Operation of Gas Turbine Inlet Filtration Systems
,”
40th Turbomachinery Symposium
, Houston, TX, Sept. 12–15, pp.
254
268
.https://www.researchgate.net/profile/Rainer_Kurz/publication/268188385_SUCCESSFUL_SELECTION_AND_OPERATION_OF_GAS_TURBINE_INLET_FILTRATION_SYSTEMS/links/5514284f0cf23203199ce277.pdf
2.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanism in Axial Compressors
,”
ASME J. Eng. Gas. Turbine Power
,
134
(
3
), p.
032401
.
3.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade, Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
4.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade, Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
5.
Carameros
,
A. H.
,
1956
, “
El Paso's Gas-Turbine Operating Experience
,”
ASME
Paper No. 56-GTP-6.
6.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Quantitative CFD Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbine Power
,
138
(
1
), p.
012603
.
7.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
8.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2005
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
9.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods
,”
ASME
Paper No. GT2015-43613.
10.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), pp.
125
133
.
11.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(
5
), p.
051025
.
12.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
,
1991
, “
Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbine Power
,
113
(
4
), pp.
607
615
.
13.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
14.
Ghenaiet
,
A.
,
2014
, “
Study of Particle Ingestion Through Two-Stage Gas Turbine
,”
ASME
Paper No. GT2014-25759.
15.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,”
Technical Report, Report No. NASA TP 1337
.https://ntrs.nasa.gov/search.jsp?R=19780025165
16.
ANSYS Fluent
,
2013
, “
Release 15.0, User Manual
,” ANSYS, Canonsburg, PA.
17.
Ahlert
,
K.
,
1994
, “
Effects of Particle Impingement Angle and Surface Wetting on Solid Particle Erosion of AISI 1018 Steel
,” M.S. thesis, Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK.
18.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.
19.
Zohdi
,
T. I.
,
2004
, “
Modeling and Direct Simulation of Near-Field Granular Flows
,”
Int. J. Solid Struct.
,
42
(2), pp.
539
564
.
20.
Tian
,
T.
, and
Ahmadi
,
G.
,
2006
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(4), pp.
377
397
.
21.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
22.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(
1
), pp.
454
471
.
23.
Silingardi
,
A.
,
Astrua
,
P.
,
Piola
,
S.
, and
Ventrucci
,
I.
,
2013
, “
A Method for a Reliable Prediction of Heavy Duty Gas Turbines Performance Degradation due to Compressor Aging Employing Field Test Data
,”
Power Gen Europe
, Wien, Austria, June 4–6.http://pennwell.sds06.websds.net/2013/vienna/pge/papers/T6S6O2-paper.pdf
24.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Harlow, UK
.
25.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
26.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,”
20th Joint Propulsion Conference
,
AIAA
Paper No. 84-1208.
27.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbine Power
,
132
(
7
), p.
072401
.
28.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(2), p.
021016
.
29.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng Gas Turbine Power
,
133
(
7
), p.
072402
.
You do not currently have access to this content.