Nozzle guide vanes (NGV) of gas turbine engines are the first components to withstand the impingement of hot combustion gas and therefore often suffer thermal fatigue failures in service. A lifting analysis is performed for the NGV of a gas turbine engine using the integrated creep–fatigue theory (ICFT). With the constitutive formulation of inelastic strain in terms of mechanism-strain components such as rate-independent plasticity, dislocation glide-plus-climb, and grain boundary sliding (GBS), the dominant deformation mechanisms at the critical locations are thus identified quantitatively with the corresponding mechanism-strain component. The material selection scenarios are discussed with regards to damage accumulated during take-off and cruise. The interplay of those deformation mechanisms in the failure process is elucidated such that an “optimum” material selection solution may be achieved.

References

References
1.
Wu
,
X. J.
,
Bird
,
J.
, and
Patnaik
,
P. C.
,
2007
, “
A Framework of Prognosis and Health Management—The NRC Approach
,”
ASME
Paper No. GT2007-27953.
2.
Aksoy
,
S.
,
Anewe
,
C.
,
O'Connor
,
J.
, and
Chwartz
,
D.
,
1987
, “
Cyclic Structural Analysis of Gas Turbine Nozzle
,”
Comput. Struct.
,
27
(
1
), pp.
165
170
.
3.
Zheng
,
X.-Q.
,
Du
,
T.
, and
Zhang
,
Y. J.
,
2011
, “
Prediction of Thermal Fatigue Life of a Turbine Nozzle Guide Vane
,”
Appl. Phys. Eng.
,
12
(
3
), pp.
214
222
.
4.
Bessrour
,
J.
,
Ben Rhima
,
A.
,
Bouhafs
,
M.
, and
Jemmali
,
M.
,
2002
, “
Thermomechanical Analysis of Creep Failure of a Gas Turbine Nozzle Guide Vane
,”
Mec. Ind.
,
3
(
1
), pp.
51
62
.
5.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.
6.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps
,
Pergamon Press
,
Oxford, UK
.
7.
Luthy
,
H.
,
White
,
R. A.
, and
Sherby
,
O.
,
1979
, “
Grain Boundary Sliding and Deformation Mechanism Maps
,”
Mater. Sci. Eng.
,
39
(
2
), pp.
211
216
.
8.
Wu
,
X. J.
, and
Koul
,
A. K.
,
1995
, “
Grain Boundary Sliding in the Presence of Grain Boundary Precipitates During Transient Creep
,”
Metall. Mater. Trans. A
,
26
(
4
), pp.
905
913
.
9.
Wu
,
X. J.
,
Williams
,
S.
, and
Gong
,
D. G.
,
2012
, “
A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2255
2262
.
10.
Bano
,
N.
,
Koul
,
A. K.
, and
Nganbe
,
M.
,
2014
, “
A Deformation Mechanism Map for the 1.23Cr-1.2Mo-0.26V Rotor Steel and Its Verification Using Neural Networks
,”
Metall. Mater. Trans. A
,
45
(
4
), pp.
1928
1936
.
11.
Wu
,
X. J.
,
2009
, “
A Model of Nonlinear Fatigue-Creep (Dwell) Interactions
,”
ASME J. Eng. Gas Turbine Powers
,
131
(
3
), p.
032101
.
12.
Wu
,
X. J.
,
2015
, “
An Integrated Creep-Fatigue Theory for Material Damage Modeling
,”
Key Eng. Mater.
,
627
, pp.
341
344
.
13.
Wu
,
X. J.
, and
Zhang
,
Z.
,
2015
, “
A Mechanism-Based Approach From Low Cycle Fatigue to Thermomechanical Fatigue Life Prediction
,”
ASME J. Gas Turbine Powers
,
138
(
7
), p.
072503
.
14.
Wu
,
X. J.
,
Quan
,
G.
,
MacNeil
,
R.
,
Zhang
,
Z.
, and
Sloss
,
C.
,
2014
, “
Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions
,”
Metall. Mater. Trans. A
,
45
(11), pp.
5088
5097
.
15.
Wu
,
X. J.
,
Quan
,
G.
,
MacNeil
,
R.
,
Zhang
,
Z.
,
Liu
,
X.
, and
Sloss
,
C.
,
2015
, “
Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction
,”
Metall. Mater. Trans. A
,
46
(6), pp.
2530
2543
.
16.
Zhao
,
J.
,
Koul
,
A. K.
, and
Banerjee
,
A.
,
2015
, “
An Investigation on the Effect of Creep Shakedown on the Creep Behavior of an Industrial Gas Turbine Blade
,”
ASME
Paper No. GT2015-43844.
You do not currently have access to this content.