Two pyrometric tools for measuring soot temperature response in fuel-rich flames under unsteady inlet airflow conditions are developed. High-speed pyrometry using a high-speed color camera is used in producing soot temperature distributions, with its results compared with those of global soot temperature response measured using a multiwavelength pyrometer. For the former, the pixel red, green, and blue (RGB) values pertaining to respective bandwidths of red, green, and blue filters are used to calculate temperature and for the latter, the emission from whole flame at 660 nm, 730 nm, and 800 nm is used to measure temperature. The combustor, running on jet-A fuel, achieves unsteady inlet airflow using a siren running at frequencies of 150 and 250 Hz and with modulation levels (root mean square (RMS)) 20–50% of mean velocity. Spatiotemporal response of flame temperature measured by the high-speed camera is presented by phase-averaged with average subtracted images and by fast Fourier transform (FFT) at the modulation frequencies of inlet velocity. Simultaneous measurement of combustor inlet air velocity and flame soot temperature using the multiwavelength pyrometer is used in calculating the flame transfer function (FTF) of flame temperature response to unsteady inlet airflow. The results of global temperature and temperature fluctuation from the three-color pyrometer show qualitative agreement with the local temperature response measured by the high-speed camera. Over the range of operating conditions employed, the overall flame temperature fluctuation increases linearly with respect to the inlet velocity fluctuation. The two-dimensional map of flame temperature under unsteady combustion determined using a high-speed digital color camera shows that the local temperature fluctuation during unsteady combustion occurs over relatively small region of flame and its level is greater (∼10% to 20%) than that of overall temperature fluctuation (∼1%).

References

References
1.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.
2.
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2003
, “
Experimental Diagnostics for the Study of Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.
3.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.
4.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2002
, “
Dynamics of and Noise Radiated by a Perturbed Impinging Premixed Jet Flame
,”
Combust. Flame
,
128
(
1
), pp.
88
110
.
5.
You
,
D.
,
Huang
,
Y.
, and
Yang
,
V.
,
2005
, “
A Generalized Model of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas–Turbine Combustion Instability Analysis
,”
Combust. Sci. Technol.
,
177
(
1
), pp.
1109
1150
.
6.
Preetham
,
S. H.
, and
Lieuwen
,
T. C.
,
2000
, “
Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1427
1434
.
7.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1
), pp.
37
55
.
8.
Kim
,
D.
,
Lee
,
J. G.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
,
Kim
,
K.
, and
Srinivasan
,
S.
,
2010
, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021502
.
9.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.
10.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Experimental Investigation of the Nonlinear Response of Swirl Stabilized Flames to Equivalence Ratio Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021502
.
11.
Knadler
,
M.
,
Cakmakci
,
A.
, and
Lee
,
J. G.
,
2015
, “
Response of Soot Temperature to Unsteady Inlet Airflow Under Modulated Condition and Naturally Occurring Combustion Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041507
.
12.
Sivathanu
,
Y. R.
, and
Faeth
,
G. M.
,
1990
, “
Temperature/Soot Volume Fraction Correlations in the Fuel-Rich Region of Buoyant Turbulent Diffusion Flames
,”
Combust. Flame
,
81
(
2
), pp.
150
165
.
13.
Ng
,
D.
, and
Fralick
,
G.
,
2001
, “
Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications
,”
Rev. Sci. Instrum.
,
72
(
2
), pp.
1522
2530
.
14.
Khatami
,
R.
, and
Levendis
,
Y.
,
2011
, “
On the Deduction of Single Coal Particle Combustion Temperature From Three-Color Optical Pyrometry
,”
Combust. Flame
,
158
(
9
), pp.
1822
1836
.
15.
Panagiotou
,
T.
,
Levendis
,
Y.
, and
Delichatsios
,
M.
,
1996
, “
Measurements of Particle Flame Temperatures Using Three-Color Optical Pyrometry
,”
Combust. Flame
,
104
(
3
), pp.
272
287
.
16.
Cassady
,
L. D.
, and
Choueiri
,
E. Y.
,
2003
, “
High Accuracy Multi-Color Pyrometry for High Temperature Surfaces
,”
Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL)
, Mechanical and Aerospace Engineering Department,
Princeton University
, Princeton, NJ.
17.
Wendler
,
M.
,
Guevara
,
G.
,
Weikl
,
M. C.
,
Sommer
,
R.
,
Beyrau
,
F.
,
Seeger
,
T.
, and
Leipertz
,
A.
,
2007
, “
Comparison of Temperature Measurements in Non-Premixed Flames Using Emission Spectroscopy and CARS
,”
European Combustion Meeting
, Crete, Greece, Apr. 11–13, Paper No. 5–21.
18.
Wainner
,
R. T.
,
Seitzman
,
J. M.
, and
Martin
,
S. R.
,
1999
, “
Soot Measurements in a Simulated Engine Exhaust Using Laser-Induced Incandescence
,”
AIAA J.
,
37
(
6
), pp.
738
743
.
19.
Wagner
,
S.
,
Klein
,
M.
,
Kathrotia
,
T.
,
Riedel
,
U.
,
Kissel
,
T.
,
Dreizler
,
A.
, and
Ebert
,
V.
,
2012
, “
In Situ TDLAS Measurement of Absolute Acetylene Concentration Profiles in a Non-Premixed Laminar Counter-Flow Flame
,”
Appl. Phys. B
,
107
(
3
), pp.
585
589
.
20.
Guo
,
H.
,
Castillo
,
J. A.
, and
Sunderland
,
P. B.
,
2013
, “
Digital Camera Measurements of Soot Temperature and Soot Volume Fraction in Axisymmetric Flames
,”
Appl. Opt.
,
52
(
33
), pp.
8040
8047
.
21.
Santoro
,
R. J.
,
Semerjian
,
H. G.
, and
Dobbins
,
R. A.
,
1983
, “
Soot Particle Measurements in Diffusion Flames
,”
Combust. Flame
,
51
, pp.
203
218
.
22.
Santoro
,
R. J.
,
Yeh
,
T. T.
,
Horvath
,
J. J.
, and
Semerjian
,
H. G.
,
1987
, “
The Transport and Growth of Soot Particles in Laminar Diffusion Flames
,”
Combust. Sci. Technol.
,
53
(
2
), pp.
89
115
.
23.
Draper
,
T. S.
,
Zeltner
,
D.
,
Tree
,
D. R.
,
Xue
,
Y.
, and
Tsiava
,
R.
,
2012
, “
Two-Dimensional Flame Temperature and Emissivity Measurements of Pulverized Oxy-Coal Flames
,”
Appl. Energy
,
95
, pp.
38
44
.
24.
Kuhn
,
P. B.
,
Ma
,
B.
,
Connelly
,
B. C.
,
Smooke
,
M. D.
, and
Long
,
M. B.
,
2010
, “
Soot and Thin-Filament Pyrometry Using a Color Digital Camera
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
743
750
.
25.
Densmore
,
J. M.
,
Biss
,
M. M.
,
McNesby
,
K. L.
, and
Homan
,
B. E.
,
2011
, “
High-Speed Digital Color Imaging Pyrometry
,”
Appl. Opt.
,
50
(
17
), pp.
2659
2665
.
26.
Simonini
,
S.
,
Elston
,
S. J.
, and
Stone
,
C. R.
,
2001
, “
Soot Temperature and Concentration Measurements From Color Charge Coupled Device Camera Images Using a Three-Colour Method
,”
Proc. Inst. Mech. Eng.
, Part C,
215
(
9
), pp.
1041
1052
.
27.
Sun
,
D.
,
Lu
,
G.
,
Zhou
,
H.
, and
Yan
,
Y.
,
2012
, “
Measurement of Soot Temperature, Emissivity, and Concentration of a Heavy-Oil Flame Through Pyrometric Imaging
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Graz, Austria, May 13–16, pp.
1865
1869
.
28.
Waser
,
M. P.
, and
Crocker
,
M. J.
,
1985
, “
Introduction to the Two-Microphone Cross-Spectral Method of Determining Sound
,”
Noise Control Eng. J.
,
22
(
3
), pp.
76
85
.
29.
Bunce
,
K.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2006
, “
Characterization of Liquid Jets-In Crossflow Under High Temperature, High Velocity Non-Oscillating and Oscillating Flow Conditions
,”
AIAA
Paper No. 2006-1225.
30.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Active Control
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
1277
1296
.
31.
Dasch
,
J. C.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Back Projection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.
You do not currently have access to this content.