Recent studies have demonstrated that, when rotating around an axis orthogonal to the flow direction, airfoils are virtually transformed into equivalent airfoils with a camber line defined by their arc of rotation. In these conditions, the symmetric airfoils commonly used for Darrieus blades actually behave like virtually cambered ones or, equivalently, rotors have to be manufactured with countercambered blades to ensure the attended performance. To complete these analyses, the present study first focuses the attention on the airfoils' aerodynamics during the startup of the rotors. It is shown that, contrary to conventional theories based on one-dimensional aerodynamic coefficients, symmetric airfoils exhibit a counterintuitive nonsymmetric starting torque over the revolution. Conversely, airfoils compensated for the virtual camber effect show a more symmetric distribution over the revolution. This behavior is due to the effect of the pitching moment, which is usually neglected in lumped parameters models. At very low revolution speeds, its contribution becomes significant due to the very high incidence angles experienced by the blades; the pitching moment is also nonsymmetric between the upwind and the downwind zone. For upwind azimuthal positions, the pitching moment reduces the overall torque output, while it changes sign in the downwind section, increasing the torque. The importance of accounting for the pitching moment contribution in the entire power curve is also discussed in relationship to the selection of the best blade–spoke connection (BSC) point, in order to maximize the performance and minimize the alternate stresses on the connection due to the pitching moment itself.

References

1.
AWEA,
2008
, “
Small Wind Turbine Global Market Study
,”
American Wind Energy Association
,
Washington, DC
.
2.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
3.
Mertens
,
S.
,
2006
,
Wind Energy in the Built Environment
,
Multi-Science
,
Brentwood, UK
.
4.
Balduzzi
,
F.
,
Bianchini
,
A.
, and
Ferrari
,
L.
,
2012
, “
Microeolic Turbines in the Built Environment: Influence of the Installation Site on the Potential Energy Yield
,”
Renewable Energy
,
45
, pp.
163
174
.
5.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Conv. Manage.
,
89
, pp.
690
707
.
6.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, Canada
.
7.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), pp.
1
10
.
8.
Borg
,
M.
,
Shires
,
A.
, and
Collu
,
M.
,
2014
, “
Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part I: Aerodynamics
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
1214
1225
.
9.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
524
, p.
012125
.
10.
Rainbird
,
J. M.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Conv. Manage.
,
106
, pp.
373
384
.
11.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance
,”
ASME
Paper No. GT2016-56685.
12.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Virtual Incidence Effect on Rotating Airfoils in Darrieus Wind Turbines
,”
Energy Conv. Manage.
,
111
(
1
), pp.
329
338
.
13.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882.
14.
Hill
,
N.
,
Dominy
,
R.
,
Ingram
,
G.
, and
Dominy
,
J.
,
2009
, “
Darrieus Turbines: The Physics of Self-Starting
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
21
29
.
15.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-Starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
.
16.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Carnevale
,
E. A.
,
2011
, “
A Model to Account for the Virtual Camber Effect in the Performance Prediction of an H-Darrieus VAWT Using the Momentum Models
,”
Wind Eng.
,
35
(
4
), pp.
465
482
.
17.
Migliore
,
P. G.
, and
Wolfe
,
W. P.
,
1980
, “
The Effects of Flow Curvature on the Aerodynamics of Darrieus Wind Turbines
,” West Virginia University, Morgantown, WV, Technical Report No.
ORO-5135-77/7
.
18.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rain bird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part I—Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
19.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part II—Post-Stall Data Extrapolation Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032603
.
20.
XFLR 5 Open Software Official Webpage, accessed Sept. 24,
2015
, www.xflr5.com/xflr5.htm
21.
Raciti Castelli
,
M.
,
Pavesi
,
G.
,
Battisti
,
L.
,
Benini
,
E.
, and
Ardizzon
,
G.
,
2010
, “
Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine
,”
ASME
Paper No. IMECE2010-39548.
22.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
23.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Influence of the Blade–Spoke Connection Point on the Aerodynamic Performance of Darrieus Wind Turbines
,”
ASME
Paper No. GT2016-57667.
24.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.
25.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part 1—Model Formulation
,”
ASME
Paper No. GT2004-53452.
26.
Daróczy
,
L.
,
Janiga
,
G.
,
Petrasch
,
K.
,
Webner
,
M.
, and
Thévenin
,
D.
,
2015
, “
Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors
,”
Energy
,
90
, pp.
680
690
.
27.
Cox
,
J. A.
,
Brentner
,
K. S.
, and
Rumsey
,
C. L.
,
1998
, “
Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers
,”
Theor. Comput. Fluid Dyn.
,
12
(
4
), pp.
233
253
.
28.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
29.
Islam
,
M.
,
Ting
,
D.
, and
Fartaj
,
A.
,
2007
, “
Desirable Airfoil Features for Smaller-Capacity Straight-Bladed VAWT
,”
Wind Eng.
,
31
(
3
), pp.
165
196
.
30.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications
,
New York
.
31.
Rainbird
,
J.
,
2015
, “
Blockage Tolerant Wind Tunnel Testing of Aerofoils at Angles of Incidence From 0 deg to 360 deg, With Respect to the Self-Start of Vertical-Axis Wind Turbines
,” Ph.D. thesis, Imperial College, London.
32.
Bianchini
,
A.
,
Cangioli
,
F.
,
Papini
,
S.
,
Rindi
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2015
, “
Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam Models: Development and Assessment
,”
ASME J. Turbomach.
,
137
(
1
), pp.
1
11
.
You do not currently have access to this content.