In this paper, a quasi-three-dimensional fluid–structure model using computational fluid dynamics for the fluid phase is presented to study the elastohydrodynamic performance of foil thrust bearings for supercritical CO2 cycles. For the simulation of the gas flows within the thin gap, the computational fluid dynamics solver Eilmer is extended, and a new solver is developed to simulate the bump and top foil within foil thrust bearings. These two solvers are linked using a coupling algorithm that maps pressure and deflection at the fluid structure interface. Results are presented for ambient CO2 conditions varying between 0.1 and 4.0 MPa and 300 and 400 K. It is found that the centrifugal inertia force can play a significant impact on the performance of foil thrust bearings with the highly dense CO2 and that the centrifugal inertia forces create unusual radial velocity profiles. In the ramp region of the foil thrust bearings, they generate an additional inflow close to the rotor inner edge, resulting in a higher peak pressure. Contrary to the flat region, the inertia force creates a rapid mass loss through the bearing outer edge, which reduces pressure in this region. This different flow fields alter bearing performance compared to conventional air foil bearings. In addition, the effect of turbulence in load capacity and torque is investigated. This study provides new insight into the flow physics within foil bearings operating with dense gases and for the selection of optimal operating condition to suit CO2 foil bearings.

References

References
1.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 Can Displace Steam
,” Power-Gen India and Central Asia, Pragati Maidan, New Delhi, India, Apr. 19–22.
2.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://stuff.mit.edu/afs/athena.mit.edu/course/22/22.33/www/dostal.pdf
3.
Turchi
,
C.
,
Ma
,
Z.
, and
Wagner
,
M.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pichard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia National Laboratories
, Albuquerque, NM, Technical Report No. SAND2010-0171.http://www.infinityturbine.com/publications/SupercriticalCO2/Infinity_100171.pdf
5.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.
6.
Conboy
,
T.
,
2013
, “
Real-Gas Effects in Foil Thrust Bearings Operating in the Turbulent Regime
,”
ASME J. Tribol.
,
135
(
3
), p.
031703
.
7.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2008
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.
8.
Bruckner
,
R.
,
2015
, “
Passive Thermal Management of Foil Bearings
,”
U.S. Patent No. 9,062,712
.https://www.google.com/patents/US9062712
9.
Hirs
,
G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Tribol.
,
95
(
2
), pp.
137
145
.
10.
Kim
,
D.
,
2015
, “
Design Space of Foil Bearings for Closed-Loop Supercritical CO2 Power Cycles Based on Three-Dimensional Thermohydrodynamic Analyses
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032504
.
11.
Munroe
,
T.
,
2011
, “
COMSOL Multiphysics Predictions of Pressurized CO2 Foil Thrust Bearing Characteristics
,”
Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25.http://www.sco2powercyclesymposium.org/resource_center/turbomachinery/comsol-multiphysics-predictions-of-pressurized-co2-foil-thrust-bearing-characteristics
12.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas Lubricated Compliant Thrust Bearings
,”
ASME J. Tribol.
,
105
(
4
), pp.
638
646
.
13.
Heshmat
,
C.
,
Xu
,
D.
, and
Heshmat
,
H.
,
1999
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.
14.
Dickman
,
J.
,
2010
, “
An Investigation of Gas Foil Thrust Bearing Performance and Its Influence Factors
,”
M.S. thesis
, Case Western Reserve University, Cleveland, OH.http://rave.ohiolink.edu/etdc/view?acc_num=case1270153301
15.
Gollan
,
R.
, and
Jacobs
,
P.
,
2013
, “
About the Formulation, Verification and Validation of the Hypersonic Flow Solver Eilmer
,”
Int. J. Numer. Methods Fluids
,
73
(
1
), pp.
19
57
.
16.
Ventura
,
C.
,
Sauret
,
E.
,
Jacobs
,
P.
,
Petrie-Repar
,
P.
, and
der Laan
,
P. V.
,
2010
, “
Adaption and Use of a Compressible Flow Code for Turbomachinery Design
,”
5th European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010)
, Lisbon, Portugal, June 14–17.
17.
Qin
,
K.
,
Jahn
,
I.
, and
Jacobs
,
P.
,
2014
, “
Validation of a Three-Dimensional CFD Analysis of Foil Bearings With Supercritical CO2
,”
19th Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec. 8–11, pp.
136.1
136.4
.http://people.eng.unimelb.edu.au/imarusic/proceedings/19/136.pdf
18.
Jacobs
,
P.
,
Gollan
,
R.
,
Jahn
,
I.
, and
Potter
,
D.
,
2015
, “
The Eilmer3 Code: User Guide and Example Book 2015 Edition
,” The University of Queensland, Brisbane, Australia,
Technical Report No. 2015/07
.http://espace.library.uq.edu.au/view/UQ:366649/UQ366649_OA.pdf
19.
Wada
,
Y.
, and
Liou
,
M.
,
1997
, “
An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities
,”
J. Sci. Comput.
,
18
(
3
), pp.
633
657
.
20.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes
,”
14th Fluid and Plasma Dynamics Conference
, Palo Alto, CA, June 23–25.
21.
Jameson
,
A.
,
2015
, “
Origins and Further Development of the Jameson–Schmidt–Turkel Scheme
,”
AIAA
Paper No. 2015-2718.
22.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–w Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
23.
Chan
,
W.
,
Jacobs
,
P.
, and
Mee
,
D.
,
2011
, “
Suitability of the k–w Turbulence Model for Scramjet Flowfield Simulations
,”
Int. J. Numer. Methods Fluids
,
70
(
4
), pp.
493
514
.
24.
Nichols
,
R. H.
, and
Nelson
,
C.
,
2004
, “
Wall Function Boundary Conditions Including Heat Transfer and Compressibility
,”
AIAA J.
,
42
(
6
), pp.
1107
1114
.
25.
Wilcox
,
D.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada Flintridge, CA
.
26.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
27.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
28.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermohydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
Tribol. Trans.
,
54
(
3
), pp.
432
448
.
29.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042501
.
30.
Qin
,
K.
, and
Jahn
,
I.
,
2015
, “
Structural Deformation of a Circular Thin Plate With Combinations of Fixed and Free Edges
,” The University of Queensland, Brisbane, Australia, Technical Report No. 2015/05.
31.
Qin
,
K.
,
Jahn
,
I.
, and
Jacobs
,
P.
,
2015
, “
Development of a Fluid–Structure Model for Gas-Lubricated Bump-Type Foil Thrust Bearings
,”
The 2nd Australasian Conference on Computational Mechanics
(
ACCM
), Brisbane, Australia, Nov. 30–Dec. 1.
32.
Gad
,
A. M.
, and
Kaneko
,
S.
,
2015
, “
Performance Characteristics of Gas-Lubricated Bump-Type Foil Thrust Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
6
), pp.
746
762
.
33.
Gad
,
A. M.
, and
Kaneko
,
S.
,
2015
, “
Tailoring of the Bearing Stiffness to Enhance the Performance of Gas-Lubricated Bump-Type Foil Thrust Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
230
(5), pp.
541
560
.
34.
San Andrés
,
L.
, and
Diemer
,
P.
,
2014
, “
Prediction of Gas Thrust Foil Bearing Performance for Oil-Free Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032502
.
35.
Qin
,
K.
,
Jahn
,
I.
,
Gollan
,
R.
, and
Jacobs
,
P.
,
2016
, “
Development of a Computational Tool to Simulate Foil Bearings for Supercritical CO2 cycles
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092503
.
36.
Souchet
,
D.
,
1991
, “
Comportement Thermohydrodynamique des Butées á Patins Oscillants en Régime Laminaire et Turbulent
,” Ph.D. thesis, University of Poitiers, Poitiers, France.
37.
Pinkus
,
O.
, and
Lund
,
J.
,
1981
, “
Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
126
136
.
38.
Garratt
,
J. E.
,
Hibberd
,
S.
,
Cliffe
,
K. A.
, and
Power
,
H.
,
2012
, “
Centrifugal Inertia Effects in High-Speed Hydrostatic Air Thrust Bearings
,”
J. Eng. Math.
,
76
(
1
), pp.
59
80
.
You do not currently have access to this content.