It is generally accepted that combustion of hydrogen and natural gas mixtures will become more prevalent in the near future, to allow for a further penetration of renewables in the European power generation system. The current work aims at the demonstration of the advantages of steam dilution, when highly reactive combustible mixtures are used in a swirl-stabilized combustor. To this end, high-pressure experiments have been conducted with a generic swirl-stabilized combustor featuring axial air injection to increase flashback safety. The experiments have been conducted with two fuel mixtures, at various pressure levels up to 9 bar and at four levels of steam dilution up to 25% steam-to-air mass flow ratio. Natural gas has been used as a reference fuel, whereas a mixture of natural gas and hydrogen (10% hydrogen by mass) represented an upper limit of hydrogen concentration in a natural gas network with hydrogen enrichment. The results of the emissions measurements are presented along with a reactor network model. The latter is applied as a means to qualitatively understand the chemical processes responsible for the observed emissions and their trends with increasing pressure and steam injection.

References

References
1.
Melaina
,
M.
,
Antonia
,
O.
, and
Penev
,
M.
,
2013
, “
Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-5600-51995.
2.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
3.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I.
,
Gulati
,
A.
,
Lenze
,
M.
, and
Koestlin
,
B.
,
2007
, “
Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels
,”
ASME
Paper No. GT2007-28337.
4.
Bonaldo
,
A.
,
Mats
,
A.
, and
Anders
,
L.
,
2014
, “
Engine Testing Using Highly Reactive Fuels on Siemens Industrial Gas Turbines
,”
ASME
Paper No. GT2014-26023.
5.
Lam
,
K.-K.
,
Geipel
,
P.
, and
Larfeldt
,
J.
,
2014
, “
Hydrogen Enriched Combustion Testing of Siemens Industrial SGT-400 at Atmospheric Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021502
.
6.
Schefer
,
R.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.
7.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.
8.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
,
2007
, “
Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
404
410
.
9.
Zhang
,
Q.
,
Noble
,
D. R.
,
Shanbhogue
,
S. J.
, and
Lieuwen
,
T.
,
2007
, “
Impacts of Hydrogen Addition on Near-Lean Blowout Dynamics in a Swirling Combustor
,”
ASME
Paper No. GT2007-27308.
10.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2012
, “
Flashback, Blow Out, Emissions, and Turbulent Displacement Flame Speed Measurements in a Hydrogen and Methane Fired Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME
Paper No. GT2012-68216.
11.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2014
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME
Paper No. GT2014-26293.
12.
Kim
,
H.
,
Arghode
,
V.
, and
Gupta
,
A.
,
2009
, “
Flame Characteristics of Hydrogen-Enriched Methane–Air Premixed Swirling Flames
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1063
1073
.
13.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071501
.
14.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2014
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
15.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111513
.
16.
Kuhn
,
P.
,
Terhaar
,
S.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2015
, “
Design and Assessment of a Fuel-Flexible Low Emission Combustor for Dry and Steam-Diluted Conditions
,”
ASME
Paper No. GT2015-43375.
17.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,”
ASME
Paper No. GT2010-22722.
18.
Göckeler
,
K.
,
2015
, “
Influence of Steam Dilution and Hydrogen Enrichment on Laminar Premixed Methane Flames
,” Ph.D. thesis, TU Berlin, Berlin, Germany.
19.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
D'Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane–Air–Steam Mixtures
,”
Fuel Process. Technol.
,
107
, pp.
27
35
.
20.
Göckeler
,
K.
,
Krüger
,
O.
, and
Oliver Paschereit
,
C.
,
2014
, “
Laminar Burning Velocities and Emissions of Hydrogen–Methane–Air–Steam Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
041505
.
21.
Boushaki
,
T.
,
Dhuè
,
Y.
,
Selle
,
L.
,
Ferret
,
B.
, and
Poinsot
,
T.
,
2012
, “
Effects of Hydrogen and Steam Addition on Laminar Burning Velocity of Methane–Air Premixed Flame: Experimental and Numerical Analysis
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9412
9422
.
22.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
23.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Paschereit
,
C. O.
,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.
24.
Bhargava
,
A.
,
Kendrick
,
D. W.
,
Colket
,
M. B.
,
Sowa
,
W. A.
,
Casleton
,
K. H.
, and
Maloney
,
D. J.
,
2000
, “
Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines
,”
ASME
Paper No. 2000-GT-0097.
25.
Lefebvre
,
A. H.
,
1983
,
Gas Turbine Combustion
,
Hemisphere Publishing
, New York.
26.
Goodwin
,
D.
,
2003
, “
An Open Source, Extensible Software Suite for CVD Process Simulation
,” Chemical Vapor Deposition XVI and
EUROCVD 14
, Paris, France, Apr. 27–May 2, pp.
155
162
.
27.
Beer
,
J.
, and
Lee
,
K.
,
1965
, “
The Effect of the Residence Time Distribution on the Performance and Efficiency of Combustors
,”
Symp. (Int.) Combust.
,
10
(
1
), pp.
1187
1202
.
28.
Michaud
,
M.
,
Westmoreland
,
P.
, and
Feitelberg
,
A.
,
1992
, “
Chemical Mechanisms of NOx Formation for Gas Turbine Conditions
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
879
887
.
29.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Göckeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45696.
30.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, Jr.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2000
, “
GRI 3.0
,” Gas Research Institute (
GRI
), Chicago, IL.
31.
Curran
,
H. J.
,
2004
, “
Detailed Chemical Kinetic Modeling; Is There Life After Gri-Mech 3.0?
,”
Am. Chem. Soc., Div. Fuel Chem.
,
49
(
1
), pp.
263
264
.
32.
Leckner
,
B.
,
1972
, “
Spectral and Total Emissivity of Water Vapor and Carbon Dioxide
,”
Combust. Flame
,
19
(
1
), pp.
33
48
.
33.
Ronney
,
P.
,
2003
, “
Gas Radiation: Emissivities, Absorptivities, Planck Mean Absorption Coefficients and Net Emission From H2O and CO2 Radiation According to the Hottel/Leckner Model
,”
University of Southern California
, Los Angeles, CA.
34.
Stathopoulos
,
P.
,
Terhaar
,
S.
, and
Paschereit
,
C.
,
2014
, “
The Ultra-Wet Cycle for High Efficiency, Low Emission Gas Turbines
,”
7th International Gas Turbine Conference
(
ETN: IGTC-14
), Brussels, Belgium, Oct. 14–15, Paper No. 38.
You do not currently have access to this content.