Lean premixed combustion promotes the occurrence of thermoacoustic phenomena in gas turbine combustors. One mechanism that contributes to the flame–acoustic interaction is entropy noise. Fluctuations of the equivalence ratio in the mixing section cause the generation of hot spots in the flame. These so-called entropy waves are convectively transported to the first stage of the turbine and generate acoustic waves that travel back to the flame; a thermoacoustic loop is closed. However, due to the lack of experimental tools, a detailed investigation of entropy waves in gas turbine combustion systems has not been possible up to now. This work presents an acoustic time-of-flight based temperature measurement method which allows the measurement of temperature fluctuations in the relevant frequency range. A narrow acoustic pulse is generated with an electric spark discharge close to the combustor wall. The acoustic response is measured at the same axial location with an array of microphones circumferentially distributed around the combustion chamber. The delay in the pulse arrival times corresponds to the line-integrated inverse speed of sound. For the measurement of entropy waves in an atmospheric combustion test rig, fuel is periodically injected into the mixing tube of a premixed combustor. The subsequently generated entropy waves are measured for different forcing frequencies of the fuel injection and for different mean flow velocities in the combustor. The amplitude decay and phase lag of the entropy waves adhere well to a Strouhal number scaling for different mean flow velocities.

References

1.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
2.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
3.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
Int. J. Acoust. Vib.
,
6
(
3
), pp.
135
146
.
4.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi-One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
, pp.
190
231
.
5.
Huet
,
M.
, and
Giauque
,
A.
,
2013
, “
A Nonlinear Model for Indirect Combustion Noise Through a Compact Nozzle
,”
J. Fluid Mech.
,
733
, pp.
268
301
.
6.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Mixed Acoustic-Entropy Combustion Instabilities in Gas Turbines
,”
J. Fluid Mech.
,
749
, pp.
542
576
.
7.
Bake
,
F.
,
Michel
,
U.
, and
Röhle
,
I.
,
2007
, “
Investigation of Entropy Noise in Aero-Engine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
370
376
.
8.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
9.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.
10.
Sattelmayer
,
T.
,
2002
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.
11.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
, p.
R2
.
12.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.
13.
Eckstein
,
J.
,
2004
, “
On the Mechanisms of Combustion Driven Low-Frequency Oscillations in Aero-Engines
,”
Ph.D. thesis
, TU München, Munich, Germany.
14.
Green
,
S. F.
,
1985
, “
An Acoustic Technique for Rapid Temperature Distribution Measurement
,”
J. Acoust. Soc. Am.
,
77
(
2
), pp.
759
763
.
15.
Kleppe
,
J.
,
Sanchez
,
J.
, and
Fralick
,
G.
,
1998
, “
The Application of Acoustic Pyrometry to Gas Turbines and Jet Engines
,”
AIAA
Paper No. 98-3611.
16.
Kleppe
,
J.
,
Norris
,
W.
,
McPherson
,
D.
, and
Fralick
,
G.
,
2004
, “
The Measurement of Performance of Combustors Using Passive Acoustic Methods
,”
AIAA
Paper No. 2004-1046.
17.
Golub
,
G. H.
, and
Loan
,
C. F. V.
,
1996
,
Matrix Computations
, 3rd ed.,
Johns Hopkins University Press
,
Baltimore, MD
.
18.
Bramanti
,
M.
,
Salerno
,
E.
,
Tonazzini
,
A.
,
Pasini
,
S.
, and
Gray
,
A.
,
1996
, “
An Acoustic Pyrometer System for Tomographic Thermal Imaging in Power Plant Boilers
,”
IEEE Trans. Instrum. Meas.
,
45
(
1
), pp.
159
167
.
19.
DeSilva
,
U.
,
Bunce
,
R.
, and
Claussen
,
H.
,
2013
, “
Novel Gas Turbine Exhaust Temperature Measurement System
,”
ASME
Paper No. GT2013-95152.
20.
Li
,
J.
,
Richecoeur
,
F.
, and
Schuller
,
T.
,
2013
, “
Reconstruction of Heat Release Rate Disturbances Based on Transmission of Ultrasounds: Experiments and Modeling for Perturbed Flames
,”
Combust. Flame
,
160
(
9
), pp.
1779
1788
.
21.
Wyber
,
R.
,
1975
, “
The Design of a Spark Discharge Acoustic Impulse Generator
,”
IEEE Trans. Acoust. Speech Signal Process.
,
23
(
2
), pp.
157
162
.
22.
Ayrault
,
C.
,
Béquin
,
P.
, and
Baudin
,
S.
,
2012
, “
Characteristics of a Spark Discharge as an Adjustable Acoustic Source for Scale Model Measurements
,”
Acoustics 2012
, Nantes, France, pp.
3549
3553
.
23.
Smits
,
A. J.
,
Perry
,
A. E.
, and
Hoffmann
,
P. H.
,
1978
, “
The Response to Temperature Fluctuations of a Constant-Current Hot-Wire Anemometer
,”
J. Phys. E: Sci. Instrum.
,
11
(
9
), pp.
909
914
.
24.
Gaetani
,
P.
,
Persico
,
G.
,
Spinelli
,
A.
,
Sandu
,
C.
, and
Niculescu
,
F.
,
2015
, “
Entropy Wave Generator for Indirect Combustion Noise Experiments in a High-Pressure Turbine
,”
European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Vol.
11
, Paper No. ETC2015-025.
25.
Li
,
H.
,
Wehe
,
S. D.
, and
McManus
,
K. R.
,
2011
, “
Real-Time Equivalence Ratio Measurements in Gas Turbine Combustors With a Near-Infrared Diode Laser Sensor
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
717
724
.
26.
Blümner
,
R.
,
Cosic
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Measurement of Equivalence Ratio Fluctuations in the Mixing Section of a Swirl-Stabilized Burner Using Wavelength Modulation Spectroscopy
,”
ASME
Paper No. GT2016-56585.
You do not currently have access to this content.