Small-scale combined heat and power (CHP) plants present lower electric efficiency in comparison to large scale ones, and this is particularly true when biomass fuels are used. In most cases, the use of both heat and electricity to serve on-site energy demand is a key issue to achieve acceptable global energy efficiency and investment profitability. However, the heat demand follows a typical daily and seasonal pattern and is influenced by climatic conditions, in particular in the case of residential and tertiary end users. During low heat demand periods, a lot of heat produced by the CHP plant is discharged. In order to increase the electric conversion efficiency of small-scale micro-gas turbine for heat and power cogeneration, a bottoming organic Rankine cycle (ORC) system can be coupled to the cycle, however, this option reduces the temperature and the amount of cogenerated heat available to the thermal load. In this perspective, the paper presents the results of a thermo-economic analysis of small-scale CHP plants composed of a micro-gas turbine (MGT) and a bottoming ORC, serving a typical residential energy demand. For the topping cycle, three different configurations are examined: (1) a simple recuperative micro-gas turbine fueled by natural gas (NG); (2) a dual fuel externally fired gas turbine (EFGT) cycle, fueled by biomass and natural gas (50% share of energy input) (DF); and (3) an externally fired gas turbine (EFGT) with direct combustion of biomass (B). The bottoming ORC is a simple saturated cycle with regeneration and no superheating. The ORC cycle and the fluid selection are optimized on the basis of the available exhaust gas temperature at the turbine exit. The research assesses the influence of the thermal energy demand typology (residential demand with cold, mild, and hot climate conditions) and CHP plant operational strategies (baseload versus heat-driven versus electricity-driven operation mode) on the global energy efficiency and profitability of the following three configurations: (A) MGT with cogeneration; (B) MGT+ ORC without cogeneration; and (C) MGT+ORC with cogeneration. In all cases, a back-up boiler is assumed to match the heat demand of the load (fed by natural gas or biomass). The research explores the profitability of bottoming ORC in view of the following trade-offs: (i) lower energy conversion efficiency and higher investment cost of biomass input with respect to natural gas; (ii) higher efficiency but higher costs and reduced heat available for cogeneration with the bottoming ORC; and (iii) higher primary energy savings and revenues from feed-in tariff available for biomass electricity fed into the grid.

References

References
1.
European Union, 2009, “
Decision 406/2009/EC of the European Parliament and of the Council of 23 April 2009
,”
OJL
,
140
, pp.
136
148
.http://data.europa.eu/eli/dec/2009/406/oj
2.
European Union, 2009, “
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009
,”
OJL
,
140
, pp.
16
62
.http://data.europa.eu/eli/dir/2009/28/oj
3.
Franco
,
A.
, and
Giannini
,
N.
,
2005
, “
Perspectives for the Use of Biomass as Fuel in Combined Cycle Power Plants
,”
Int. J. Therm. Sci.
,
44
(
2
), pp.
163
177
.
4.
Pantaleo
,
A.
,
Camporeale
,
S.
, and
Shah
,
N.
,
2013
, “
Thermo-Economic Assessment of Externally Fired Micro Gas Turbine Fired by Natural Gas and Biomass: Applications in Italy
,”
Energy Convers. Manage.
,
75
, pp.
202
213
.
5.
Fortunato
,
B.
,
Camporeale
,
S. M.
, and
Torresi
,
M.
,
2013
, “
A Gas-Steam Combined Cycle Powered by Syngas Derived From Biomass
,”
Procedia Comput. Sci.
,
19
, pp.
736
745
.
6.
Chen
,
H.
,
Yogi Goswami
,
D.
,
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
7.
David
,
G.
,
Michel
,
F.
, and
Sanchez
,
L.
,
2011
, “
Waste Heat Recovery Projects Using Organic Rankine Cycle Technology—Examples of Biogas Engines and Steel Mills Applications
,” World Engineer's Convention (WEC 2011), Sept. 4–9, Geneva, Switzerland.
8.
Invernizzi
,
C. M.
,
Iora
,
P.
, and
Sandrini
,
R.
,
2011
, “
Biomass Combined Cycles Based on Externally Fired Gas Turbines and Organic Rankine Expanders
,”
J. Power Energy
,
225
(
8
), pp.
1066
1075
.
9.
Kusterer
,
K.
,
Braun
,
R.
, and
Bohn
,
D.
, “
Organic Rankine Cycle Working Fluid Selection and Performance Analysis for Combined Application With a 2 MW Class Industrial Gas Turbine
,”
ASME
Paper No. GT2014-25439.
10.
Pantaleo
,
A.
,
Camporeale
,
S.
, and
Shah
,
N.
,
2014
, “
Natural Gas—Biomass Dual Fuelled Microturbines: Comparison of Operating Strategies in the Italian Residential Sector
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
686
696
.
11.
Camporeale
,
S.
,
Turi
,
F.
,
Torresi
,
M.
,
Fortunato
,
B.
,
Pantaleo
,
A.
, and
Pellerano
,
A.
,
2015
, “
Part Load Performances and Operating Strategies of a Natural Gas-Biomass Dual Fuelled Microturbine for CHP Operation
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
121401
.
12.
Pantaleo
,
A.
,
Shah
,
N.
, and
Keirstead
,
J.
,
2013
,
Bioenergy and Other Renewables in Urban Energy Systems
() in Urban Energy Systems—An Integrated Approach, eds., J Keirstead and N Shah, Routledge, NY.
13.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2013
, “
Thermoeconomic Optimization of Three Trigeneration Systems Using Organic Rankine Cycles: Part I—Formulations
,”
Energy Convers. Manage.
,
69
, pp.
199
208
.
14.
Galanti
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Thermoeconomic Analysis of Micro Gas Turbine Design in the Range 25–500 kWe
,”
ASME
Paper No. GT2010-22351.
15.
Ferreira
,
A. C. M.
,
Nunes
,
M. L.
,
Teixeira
,
S. F. C. F.
,
Leão
,
C. P.
,
Silva
,
Â. M.
,
Teixeira
,
J. C. F.
, and
Martins
,
L. S. B.
,
2012
, “
An Economic Perspective on the Optimisation of a Small-Scale Cogeneration System for the Portuguese Scenario
,”
Energy
,
45
(
1
), pp.
436
444
.
16.
Pantaleo
,
A.
,
Candelise
,
C.
,
Bauen
,
A.
, and
Shah
,
N.
,
2014
, “
ESCO Business Models for Biomass Heating and CHP: Case Studies in Italy
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
237
253
.
17.
Ministry Decree 5-09-2011 on Incentives for High Efficiency Cogeneration in Italy (in Italian), http://www.gazzettaufficiale.it/eli/id/2011/09/19/11A12047/sg
18.
Ministry Decree 6-07-2012 on the Reform of the Supporting Mechanism for Renewable Electricity in Italy (in Italian), http://www.gazzettaufficiale.it/eli/id/2012/07/10/12A07628/sg
19.
Rosa do Nascimento
,
M. A.
,
de Oliveira Rodrigues
,
L.
,
Cruz dos Santos
,
E.
,
Batista Gomes
,
E. E.
,
Goulart Dias
,
F. L.
,
Gutiérrez Velásques
,
E. I.
, and
Miranda Carrillo
,
R. A.
, 2013, “
Micro Gas Turbine Engine: A Review
,” Progress in Gas Turbine Performance, E. Benini, ed., InTech, Rijeka, Croatia.
20.
Hamilton
,
S. L.
,
2003
,
The Handbook of Microturbine Generators
,
PennWell Corporation
, Tulsa, OK.
21.
Obernberger
,
I.
,
1998
, “
Decentralized Biomass Combustion: State of the Art and future Development
,”
Biomass Bioenergy
,
14
(
1
), pp.
33
57
.
22.
Riccio
,
G.
, and
Chiaramonti
,
D.
,
2009
, “
Design and Simulation of a Small Polygeneration Plant Cofiring Biomass and Natural Gas in a Dual Combustion Micro Gas Turbine (BIO_MGT)
,”
Biomass Bioenergy
.,
33
(
11
), pp.
1520
1531
.
23.
Yan
,
J.
, and
Eidensten
,
L.
,
2000
, “
Status and Perspective of Externally Fired Gas Turbines
,”
J. Propul. Power
,
16
(
4
), pp. 572–576.
24.
Ferreira
,
S. B.
, and
Pilidis
,
P.
,
2001
, “
Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
291
296
.
25.
Rossetti
,
A.
,
Armanasco
,
F.
, and
Lucchini
,
A.
,
2012
, “
Analisi tecnico economica di impianti turbogas di piccola—media taglia con combustione di biomassa e combustibili fossili
,” (In Italian), Ricera sul Sistema Energetico- RSE S.p.A., Milan, Italy, accessed on Jan. 3, 2015, http://doc.rse-web.it/doc/doc-sfoglia/12000779-314716/12000779-314716.html
26.
Knoef
,
H.
,
1998
, “
The Indirectly Fired Gas Turbine for Rural Electricity Production From Biomass
,”
3rd International Seminar on ORC Power Systems
, Brussels, Belgium, Oct. 12–14, Paper No. 182.
27.
Soltani
,
S.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2013
, “
Thermodynamic Analyses of an Externally Fired Gas Turbine Combined Cycle Integrated With a Biomass Gasification Plant
,”
Energy Convers. Manage.
,
70
, pp.
107
115
.
28.
Evans
,
R. L.
, and
Zaradic
,
A. M.
,
1996
, “
Optimization of a Wood-Waste-Fuelled Indirectly Fired Gas Turbine Cogeneration Plant
,”
Bioresour. Technol.
,
57
(
2
), pp.
117
126
.
29.
Cocco
,
D.
,
Deiana
,
P.
, and
Cau
,
G.
,
2006
, “
Performance Evaluation of Small Size Externally Fired Gas Turbine (EFGT) Power Plants Integrated With Direct Biomass Dryers
,”
Energy
,
31
(
10–11
), pp.
1459
1471
.
30.
Kautz
,
M.
, and
Hansen
,
U.
,
2007
, “
The Externally-Fired Gas-Turbine (EFGT-Cycle) for Decentralized Use of Biomass
,”
Appl. Energy
,
84
(
7–8
), pp.
795
805
.
31.
Riccio
,
G.
,
Martelli
,
F.
, and
Maltagliati
,
S.
, “
Study of an External Fired Gas Turbine Power Plant Fed by Solid Fuel
,”
ASME
Paper No. 0015-GT-2000.
32.
He
,
C.
,
Liu
,
C.
,
Gao
,
H.
,
Xie
,
H.
,
Li
,
Y.
,
Wu
,
S.
, and
Xu
,
J.
,
2012
, “
The Optimal Evaporation Temperature and Working Fluids for Subcritical Organic Rankine Cycle
,”
Energy
,
38
(
1
), pp.
136
143
.
33.
Ansaldo Energia, “
AE-T100 Micro Turbine, Natural Gas, DATA SHEET
,” Ansaldo Energia, Genova, Italy, accessed, Jan. 3, 2015, http://www.ansaldoenergia.com/easyUp/file/ae-t100_micro_turbine_natural_gas_sheet_englis.pdf
34.
Horlock
,
J. H.
,
1992
,
Combined Power Plants
,
Pergamon Press
, Oxford, UK.
35.
Asimptote, “
Cycle Tempo
,” Asimptote, Delft, The Netherlands, accessed, Jan. 3, 2015, http://www.asimptote.nl/software/cycle-tempo/
36.
Tidball
,
R.
,
Bluestein
,
J.
,
Rodriguez
,
N.
, and
Knoke
,
S.
,
2010
, “
Cost and Performance Assumptions for Modeling Electricity Generation Technologies
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL
/SR-6A20-48595http://www.nrel.gov/docs/fy11osti/48595.pdf.
37.
Autorità per l'Energia Elettrica il Gas e il Sistema Idrico (AEEGSI), “
Condizioni economiche per i clienti del mercato tutelato
,” (In Italian), accessed, Oct. 2013, http://www.autorita.energia.it/it/dati/condec.htm
38.
General Electric, “
Performance/Heat Balance Software for Power Plant Simulation
,” accessed, Jan, 3, 2015, https://getotalplant.com/GateCycle/docs/GateCycle/index.html
39.
Arvay
,
P.
,
Muller
,
M. R.
, and
Ramdeen
,
V.
,
2011
, “
Economic Implementation of the Organic Rankine Cycle in Industry
,” ACEEE Summer Study on Energy Efficiency in Industry, Niagra Falls, NY, July 26–29,
ACEEE
, Paper No. 20045http://aceee.org/files/proceedings/2011/data/papers/0085-000077.pdf.
You do not currently have access to this content.