The present paper analyzes the effect of passive flow control (PFC) with respect to the retrofitting on small horizontal axis wind turbines (sHAWTs). We conducted extensive wind tunnel studies on a high performance low Reynolds airfoil using different PFC elements, i.e., vortex generators (VGs) and Gurney flaps (GF). qblade, an open source blade element momentum (BEM) code, is used to study the retrofitting potential of a simulated small wind turbine. The turbine design is presented and discussed. The simulations include the data and polars gained from the experiments and give further insight into the effects of PFC on sHAWTs. Therefore, several different blades were simulated using several variations of VG positions. This paper discusses their influence on the turbine performance. The authors especially focus on the startup performance as well as achieving increased power output at lower wind speeds. The vortex generators reduce the risk of laminar separation and enhance the lift in some configurations by more than 40% at low Reynolds numbers.

References

References
1.
Simic
,
Z.
,
Havelka
,
J. G.
, and
Vrhovcak
,
M. B.
,
2013
, “
Small Wind Turbines—A Unique Segment of the Wind Power Market
,”
Renewable Energy
,
50
(
50
), pp.
1027
1036
.
2.
Acosta
,
J.
,
Combe
,
K.
,
Djokić
,
S.
, and
Hernando-Gil
,
I.
,
2012
, “
Performance Assessment of Micro and Small-Scale Wind Turbines in Urban Areas
,”
IEEE Syst. J.
,
6
(
1
), pp.
152
163
.
3.
Worasinchai
,
S.
,
Ingram
,
G. L.
, and
Dominy
,
R. G.
,
2012
, “
Effects of Wind Turbine Starting Capability on Energy Yield
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042603
.
4.
Althaus
,
D.
,
1996
,
Niedriggeschwindigkeitsprofile: Profilentwicklungen und Polarenmessungen im Laminarwindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart
(Aus dem Programm Strömungsmechanik),
Vieweg
,
Wiesbaden, Germany
.
5.
Griffin
,
D.
, and
Russel
,
D. A.
,
1994
, “
Experimental Study of a Method for Predicting the Effect of Vortex-Generators
,”
AIAA
Paper No. 94-2378.
6.
Velte
,
C.
,
Hansen
,
M.
,
Meyer
,
K.
, and
Fuglsang
,
P.
,
2008
, “
Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile Using Stereoscopic PIV
,”
WMSCI 2008
:
12th World Multi-Conference on Systemics, Cybernetics and Informatics
,
N.
Callaos
,
W.
Lesso
,
C. D.
Zinn
,
J.
Baralt
,
K.
Eshraghian
,
S.
Severi
, eds., International Institute of Informatics and Systemics, Vol.
2
, pp.
263
267
.http://orbit.dtu.dk/fedora/objects/orbit:52882/datastreams/file_3161071/content
7.
Müller-Vahl
,
H.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2012
, “
Vortex Generators for Wind Turbine Blades a Combined Wind Tunnel and Wind Turbine Parametric Study
,”
ASME
Paper No. GT2012-69197.
8.
Standish
,
K. J.
, and
van Dam
,
C. P.
,
2005
, “
Computational Analysis of a Microtab-Based Aerodynamic Load Control System for Rotor Blades
,”
J. Am. Helicopter Soc.
,
50
(
3
), pp.
249
258
.
9.
Baker
,
J. P.
,
Standish
,
K. J.
, and
van Dam
,
C. P.
,
2007
, “
Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil
,”
J. Aircr.
,
44
(
2
), pp.
563
572
.
10.
Yen Nakafuji
,
D. T.
,
van Dam
,
C. P.
,
Smith
,
R. L.
, and
Collins
,
S. D.
,
2001
, “
Active Load Control for Airfoils Using Microtabs
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
282
289
.
11.
van Dam
,
C. P.
,
Chow
,
R.
,
Zayas
,
J. R.
, and
Berg
,
D. E.
,
2007
, “
Computational Investigations of Small Deploying Tabs and Flaps for Aerodynamic Load Control
,”
J. Phys.: Conf. Ser.
,
75
(75), p.
012027
.
12.
Holst
,
D.
,
Bach
,
A. B.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of a Finite Width Micro-Tab on the Spanwise Lift Distribution
,”
ASME
Paper No. GT2013-94381.
13.
Bach
,
A. B.
,
Holst
,
D.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Transitional Effects of Active Micro-Tabs for Wind Turbine Load Control
,”
ASME
Paper No. GT2013-94369.
14.
Holst
,
D.
,
Bach
,
A. B.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Pechlivanoglou
,
G.
,
2015
, “
Wake Analysis of a Finite Width Gurney Flap
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062602
.
15.
Bach
,
A. B.
,
Berg
,
R.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Experimental Investigation of the Aerodynamic Lift Response of an Active Finite Gurney Flap
,”
AIAA
Paper No. 2015-1270.
16.
Bach
,
A. B.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Wake Vortex Field of an Airfoil Equipped With an Active Finite Gurney Flap
,”
AIAA
Paper No. 2015-1271.
17.
Meyer
,
R.
,
Hage
,
W.
,
Bechert
,
D. W.
,
Schatz
,
M.
, and
Thiele
,
F.
,
2006
, “
Drag Reduction on Gurney Flaps by Three-Dimensional Modifications
,”
J. Aircr.
,
43
(
1
), pp.
132
140
.
18.
Selig
,
M. S.
, and
McGranahan
,
B. D.
,
2004
, “
Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
986
1001
.
19.
Holst
,
D.
,
Pechlivanoglou
,
G.
,
Kohlrausch
,
C. T.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
sHAWT Design: Airfoil Aerodynamics Under the Influence of Roughness
,”
ASME
Paper No. GT2016-56377.
20.
Barlow
,
J. B.
,
Rae
,
W. H.
, Jr.
, and
Pope
,
A.
,
1999
,
Low-Speed Wind Tunnel Testing
,
Wiley
,
New York
.
21.
Drela
,
M.
, and
Giles
,
M. B.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.
22.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
(Lecture Notes in Engineering, Vol.
54
),
T.
Mueller
, ed.,
Springer
,
Berlin
, pp.
1
12
.
23.
Huber
,
A. F.
, and
Mueller
,
T. J.
,
1987
, “
The Effect of Trip Wire Roughness on the Performance of the Wortmann FX 63-137 Airfoil at Low Reynolds Numbers
,”
Exp. Fluids
,
5
(
4
), pp.
263
272
.
24.
Bastedo
,
W. G.
, Jr.
, and
Mueller
,
T. J.
,
1986
, “
Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Numbers
,”
J. Aircr.
,
23
(
9
), pp.
687
694
.
25.
Baker
,
J. P.
,
Standish
,
K. J.
, and
van Dam
,
C. P.
,
2005
, “
Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified S809 Airfoil
,”
AIAA
Paper No. 2005-1186.
27.
Marten
,
D.
,
2014
, “
QBlade
,” Chair of Fluid Dynamics, TU Berlin, accessed Sept. 10, 2016, http://fd.tu-berlin.de/en/research/projects/wind-energy/qblade/
28.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072601
.
29.
Montgomerie
,
B.
,
2004
, “
Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±100 deg With Application to Aerodynamics for Blades on Wind Turbines and Propellers
,” Swedish Defence Agency, Technical Report No. FOI-R-1035-SE.
30.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
2nd ed.
,
Earthscan
,
London
.
You do not currently have access to this content.