While turbine rim sealing flows are an important aspect of turbomachinery design, affecting turbine aerodynamic performance and turbine disk temperatures, the present understanding and predictive capability for such flows is limited. The aim of the present study is to clarify the flow physics involved in rim sealing flows and to provide high-quality experimental data for use in evaluation of computational fluid dynamics (CFD) models. The seal considered is similar to a chute seal previously investigated by other workers, and the study focuses on the inherent unsteadiness of rim seal flows, rather than unsteadiness imposed by the rotating blades. Unsteady pressure measurements from radially and circumferentially distributed transducers are presented for flow in a rotor–stator disk cavity and the rim seal without imposed external flow. The test matrix covered ranges in rotational Reynolds number, Re, and nondimensional flow rate, Cw, of 2.2–3.0 × 106 and 0–3.5 × 103, respectively. Distinct frequencies are identified in the cavity flow, and detailed analysis of the pressure data associates these with large-scale flow structures rotating about the axis. This confirms the occurrence of such structures as predicted in previously published CFD studies and provides new data for detailed assessment of CFD models.

References

References
1.
Chew
,
J. W.
,
Hills
,
N. J.
,
Hornsby
,
C.
, and
Young
,
C.
,
2003
, “
Recent Developments in Application of CFD to Turbomachinery Internal Air Systems
,”
5th European Turbomachinery Conference (ETC5)
, Prague, Czech Republic, Mar. 17–21, Paper No. 119-TA20-7.
2.
Boudet
,
J.
,
Autef
, V
. N. D.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.
3.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
4.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.
5.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
6.
O'Mahoney
,
T.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
12
), pp.
2881
2891
.
7.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2012
, “
Sensitivity of LES Results From Turbine Rim Seals to Changes in Grid Resolution and Sector Size
,”
Prog. Aerosp. Sci.
,
52
, pp.
48
55
.
8.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D.
,
Funke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.
9.
Zhou
,
D.
,
Roy
,
R.
,
Wang
,
C.
, and
Glahn
,
J.
,
2009
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
10.
Wang
,
C.-Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2012
, “
Rim Seal Ingestion in Turbine Stage From 360-Dgree Time-Dependent Numerical Simulations
,”
ASME
Paper No. GT2012-68193.
11.
Roy
,
R.
,
Feng
,
J.
,
Saurabh
,
P.
, and
Paolillo
,
R.
,
2004
, “
Experiments on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME
Paper No. GT2004-53394.
12.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge Flow on the Secondary Flow Structures of a High Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
13.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.
14.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
15.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
1988
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Flow Conditions
,”
ASME
Paper No. 88-GT-144.
16.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disc System With a Radial Outflow of Coolant
,”
ASME J. Eng. Gas Turbines Power
,
92
(
3
), pp.
335
341
.
17.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disc Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.
You do not currently have access to this content.