Driven by the need for higher cycle efficiencies, overall pressure ratios for gas turbine engines continue to be pushed higher thereby resulting in increasing gas temperatures. Secondary air, bled from the compressor, is used to cool turbine components and seal the cavities between stages from the hot main gas path. This paper compares a range of purge flows and two different purge hole configurations for introducing the purge flow into the rim cavities. In addition, the mate face gap leakage between vanes is investigated. For this particular study, stationary vanes at engine-relevant Mach and Reynolds numbers were used with a static rim seal and rim cavity to remove rotational effects and isolate gas path effects. Sealing effectiveness measurements, deduced from the use of CO2 as a flow tracer, indicate that the effectiveness levels on the stator and rotor side of the cavity depend on the mass and momentum flux ratios of the purge jets relative to the swirl velocity. For a given purge flow rate, fewer purge holes resulted in better sealing than the case with a larger number of holes.

References

1.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheelspace)
,”
13th International Congress on Combustion Engines (CIMAC)
, Vienna, Austria, May 7–10, Paper No. GT30.
2.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
3.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
4.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
5.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,” Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Dayton, OH,
Report No. FWRL-TR-2050
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA187199
6.
Johnson
,
B.
,
Mack
,
G.
,
Paolillo
,
R.
, and
Daniels
,
W.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 1994-2703.
7.
Feiereisen
,
J. M.
,
Paolillo
,
R. E.
, and
Wagner
,
J.
,
2000
, “
UTRC Turbine Rim Seal Ingestion and Platform Cooling Experiments
,”
AIAA
Paper No. 2000-3371.
8.
Gibson
,
J.
,
Thole
,
K.
,
Christophel
,
J.
, and
Memory
,
C.
,
2015
, “
Effects of the Main Gas Path Pressure Field on Rim Seal Flows in a Stationary Linear Cascade
,”
ASME
Paper No. GT2015-43517.
9.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
10.
Scobie
,
J. A.
,
Teuber
,
R.
,
Li
,
Y. S.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2016
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022503
.
11.
Coren
,
D. D.
,
Atkins
,
N. R.
,
Long
,
C. A.
,
Eastwood
,
D.
,
Childs
,
P. R. N.
,
Guijarro-Valencia
,
A.
, and
Dixon
,
J. A.
,
2011
, “
The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness
,”
ASME
Paper No. GT2011-46448.
12.
Andreini
,
A.
,
Da Soghe
,
R.
, and
Facchini
,
B.
,
2010
, “
Turbine Stator Well CFD Studies: Effects of Coolant Supply Geometry on Cavity Sealing Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021008
.
13.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng. Part J
,
227
(
2
), pp.
167
178
.
14.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
15.
Bunker
,
R. S.
,
Laskowski
,
G. M.
,
Bailey
,
J. C.
,
Palafox
,
P.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part 1: Experimental Measurements
,”
ASME J. Turbomach.
,
133
(
2
), p.
021015
.
16.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
Development of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
17.
Clark
,
K.
,
Barringer
,
M.
,
Coward
,
A.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Deduce Sealing Effectiveness for an Engine Realistic Rim Seal Geometry
,”
ASME
Paper No. GT2016-58095.
18.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
19.
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Effect of Ingestion on Temperature of Turbine Disks
,”
ASME J. Turbomach.
,
135
(
5
), p.
051010
.
20.
Cho
,
G. H.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Discs
,”
ASME
Paper No. GT2015-43234.
You do not currently have access to this content.