A significant challenge in improving the regeneration process of jet engines is the reduction of engine down-time during inspection. As such, early defect detection without engine disassembly will speed up the regeneration process. Defects in the engines hot-gas path (HGP) influence the density distribution of the flow and lead to irregularities in the density distribution of the exhaust jet which can be detected with the optical background-oriented Schlieren (BOS) method in a tomographic setup. The present paper proposes a combination of tomographic BOS measurements and supervised learning algorithms to develop a methodology for an automatic defect detection system. In the first step, the methodology is tested by analyzing the exhaust jet of a swirl burner array with a nonuniform fuel-supply of single burners with tomographic BOS measurements. The measurements are used to implement a support vector machine (SVM) pattern recognition algorithm. It is shown that the reconstruction quality of tomographic BOS measurements is high enough to be combined with pattern recognition algorithms. The results strengthen the hypothesis that it is possible to automatically detect defects in jet engines with tomographic BOS measurements and pattern recognition algorithms.

References

References
1.
Adamczuk
,
R. R.
,
Buske
,
C.
,
Roehle
,
I.
,
Hennecke
,
C.
,
Dinkelacker
,
F.
, and
Seume
,
J. R.
,
2013
, “
Impact of Defects and Damage in Aircraft Engines on the Exhaust Jet
,”
ASME
Paper No. GT2013-95079.
2.
Richard
,
H.
,
Raffel
,
M.
,
Rein
,
M.
,
Kompenhans
,
J.
, and
Meier
,
G. E. A.
,
2000
, “
Demonstration of the Applicability of a Background Oriented Schlieren (BOS) Method
,”
10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon
,
Portugal
, July 10–13, pp.
145
156
.
3.
Politz
,
C.
,
Over
,
B.
, and
Kirmse
,
T.
,
2013
, “
The Application of Background Oriented Schlieren Method to Aircraft Wake Vortex Investigations
,”
Advanced In-Flight Measurement Techniques
,
Springer
,
Berlin
, pp.
321
329
.
4.
Schröder
,
A.
,
Geisler
,
R.
,
Schanz
,
D.
,
Agocs
,
J.
,
Pallek
,
D.
,
Schroll
,
M.
,
Klinner
,
J.
,
Beversdorff
,
M.
,
Voges
,
M.
, and
Willert
,
C.
,
2014
, “
Application of Image Based Measurement Techniques for the Investigation of Aeroengine Performance on a Commercial Aircraft in Ground Operation
,”
17th International Symposium on Applications of Laser Techniques to Mechanics
, Lisbon, Portugal, July 7–10.
5.
Adamczuk
,
R. R.
,
Hartmann
,
U.
, and
Seume
,
J.
,
2013
, “
Experimental Demonstration of Analyzing an Engine's Exhaust Jet With the Background-Oriented Schlieren Method
,”
AIAA
Paper No. AIAA 2013-2488.
6.
Raffel
,
M.
,
2015
, “
Background-Oriented Schlieren (BOS) Techniques
,”
Exp. Fluids
,
56
(
3
), pp.
1
17
.
7.
Bathel
,
B. F.
,
Borg
,
S. E.
,
Walker
,
E.
, and
Mizukaki
,
T.
,
2015
, “
Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities (Invited)
,”
53rd AIAA Aerospace Sciences Meeting
, American Institute of Aeronautics and Astronautics,
AIAA
Paper No. 2015-1691.
8.
Mizukaki
,
T.
,
Bathel
,
B. F.
,
Borg
,
S. E.
,
Danehy
,
P. M.
,
Murman
,
S. M.
,
Matsumura
,
T.
,
Wakabayashi
,
K.
, and
Nakayama
,
Y.
,
2015
. “
Background-Oriented Schlieren for Large-Scale and High-Speed Aerodynamic Phenomena (Invited)
,”
AIAA
Paper No. 2015-1692.
9.
Hennecke
,
C.
,
Hartmann
,
U.
,
Dinkelacker
,
F.
, and
Seume
,
J.
,
2015
, “
Correlation of Defects in an Annular Swirl-Burner-Array by Optical Measuring Exhaust Gases and Numerical Analysis
,”
Deutscher Luft- und Raumfahrtkongress, Rostock
,
Germany
, Sept. 22–24.
10.
von der Haar
,
H.
,
Hartmann
,
U.
,
Hennecke
,
C.
,
Dinkelacker
,
F.
, and
Seume
,
J. R.
,
2016
, “
Defect Detection in an Annular Swirl-Burner-Array by Optical Measuring Exhaust Gases
,”
ASME
Paper No. GT2016-57847.
11.
Goldhahn
,
E.
, and
Seume
,
J.
,
2007
, “
The Background Oriented Schlieren Technique: Sensitivity, Accuracy, Resolution and Application to a Three-Dimensional Density Field
,”
Exp. Fluids
,
43
(
2–3
), pp.
241
249
.
12.
Hartmann
,
U.
, and
Seume
,
J.
,
2015
, “
Application of an Algebraic Reconstruction Algorithm to Tomographic BOS Measurements
,” International Gas Turbine Congress, Tokyo, Japan, Nov. 15–20, pp.
1214
1221
.
13.
Herbst
,
F.
,
Peters
,
M.
, and
Seume
,
J. R.
,
2011
, “
To the Limits of the Application of the Bos-Method
,”
11th International Conference on Fluid Control, Measurements, and Visualization (FLUCOME 2011)
,
Keelung
,
Taiwan
, Dec. 5–9.
14.
Goldhahn
,
E.
,
Alhaj
,
O.
,
Herbst
,
F.
, and
Seume
,
J.
,
2009
, “
Quantitative Measurements of Three-Dimensional Density Fields Using the Background Oriented Schlieren Technique
,”
Imaging Measurement Methods for Flow Analysis
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 106),
W.
Nitsche
, and
C.
Dobriloff
, eds.,
Springer
,
Berlin
, pp.
135
144
.
15.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2560
2574
.
16.
Wang
,
Z.
,
Zarader
,
J. L.
, and
Argentieri
,
S.
,
2012
, “
A Novel Aircraft Engine Fault Diagnostic and Prognostic System Based on SVM
,”
IEEE International Conference on Condition Monitoring and Diagnosis
(
CMD 2012
),
Bali
,
Indonesia
, Sept. 23–27, pp.
723
728
.
17.
Heng
,
H.
,
Zhang
,
J.
, and
Xin
,
C.
,
2012
, “
Research on Aircraft Engine Fault Detection Based on Support Vector Machines
,” Consumer Electronics, Communications and Networks (
CECNet
),
Yichang
,
China
, Apr. 21–23, pp.
496
499
.
18.
Hayton
,
P.
,
Schölkopf
,
B.
,
Tarassenko
,
L.
, and
Anuzis
,
P.
,
2001
, “
Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra
,”
Advances in Neural Information Processing Systems 13
,
T. K.
Leen
,
T. G.
Dietterich
, and
V.
Tresp
, eds.,
MIT Press
,
Cambridge, MA
, pp.
946
952
.
19.
Hayton
,
P.
,
Utete
,
S.
,
King
,
D.
,
King
,
S.
,
Anuzis
,
P.
, and
Tarassenko
,
L.
,
2007
, “
Static and Dynamic Novelty Detection Methods for Jet Engine Health Monitoring
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
493
514
.
20.
Kim
,
Y.
,
Jang
,
J.
,
Kim
,
W.
,
Roh
,
T. S.
, and
Choi
,
D. W.
,
2012
, “
Multiple Defect Diagnostics of Gas Turbine Engine Using SVM and RCGA-Based ANN Algorithms
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1623
1632
.
21.
Xu
,
Q.-h.
, and
Shi
,
J.
,
2006
, “
Fault Diagnosis for Aero-Engine Applying a New Multi-Class Support Vector Algorithm
,”
Chin. J. Aeronaut.
,
19
(
3
), pp.
175
182
.
22.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
23.
Florian
,
A.
,
1992
, “
An Efficient Sampling Scheme: Updated Latin Hypercube Sampling
,”
Probab. Eng. Mech.
,
7
(
2
), pp.
123
130
.
24.
Platt
,
J. C.
,
2000
, “
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
,”
Advances in Large Margin Classifiers
, Vol. 10,
A.
Smola
,
P.
Bartlett
,
B.
Schoelkopf
, and
D.
Schuurmans
, eds.,
MIT Press
,
Cambridge, MA
, pp.
61
74
.
You do not currently have access to this content.