The computational modeling of soot in aircraft engines is a formidable challenge, not only due to the multiscale interactions with the turbulent combustion process but the equally complex physical and chemical processes that drive the conversion of gas-phase fuel molecules into solid-phase particles. In particular, soot formation is highly sensitive to the gas-phase composition and temporal fluctuations in a turbulent background flow. In this work, a large-eddy simulation (LES) framework is used to study the soot formation in a model aircraft combustor with swirl-based fuel and air injection. Two different configurations are simulated: one with and one without secondary oxidation jets. Specific attention is paid to the LES numerical implementation such that the discrete solver minimizes the dissipation of kinetic energy. Simulation of the model combustor shows that the LES approach captures the two recirculation zones necessary for flame stabilization very accurately. Further, the model reasonably predicts the temperature profiles inside the combustor. The model also captures variation in soot volume fraction with global equivalence ratio. The structure of the soot field suggests that when secondary oxidation jets are present, the inner recirculation region becomes fuel lean, and soot generation is completely suppressed. Further, the soot field is highly intermittent suggesting that a very restrictive set of gas-phase conditions promotes soot generation.

References

References
1.
Raman
,
V.
, and
Fox
,
R. O.
,
2016
, “
Modeling of Fine-Particle Formation in Turbulent Flames
,”
Ann. Rev. Fluid Mech.
,
48
(
1
), pp.
159
190
.
2.
Donde
,
P.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
LES/PDF Based Modeling of Soot-Turbulence Interactions in Turbulent Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1183
1192
.
3.
Mueller
,
M. E.
,
Chan
,
Q. N.
,
Qamar
,
N. H.
,
Dally
,
B. B.
,
Pitsch
,
H.
,
Alwahabi
,
Z. T.
, and
Nathan
,
G. J.
,
2013
, “
Experimental and Computational Study of Soot Evolution in a Turbulent Nonpremixed Bluff Body Ethylene Flame
,”
Combust. Flame
,
160
(
7
), pp.
1298
1309
.
4.
Raman
,
V.
, and
Dally
,
B.
,
2014
, “
Turbulent Sooting Flames
,” Second International Sooting Flame (ISF) Workshop, pp.
7
13
.
5.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
LES Models for Sooting Turbulent Nonpremixed Flames
,”
Combust. Flame
,
159
(
6
), pp.
2166
2180
.
6.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
Large Eddy Simulation of Soot Evolution in an Aircraft Combustor
,”
Phys. Fluids
,
25
(
11
), p.
110812
.
7.
Raman
,
V.
,
Pitsch
,
H.
, and
Fox
,
R. O.
,
2005
, “
A Consistent Hybrid LES-FDF Scheme for the Simulation of Turbulent Reactive Flows
,”
Combust. Flame
,
143
(
1–2
), pp.
56
78
.
8.
Kempf
,
A.
,
Lindstedt
,
R. P.
, and
Janicka
,
J.
,
2006
, “
Large-Eddy Simulation of Bluff-Body Stabilized Nonpremixed Flame
,”
Combust. Flame
,
144
(
1–2
), pp.
170
189
.
9.
Raman
,
V.
, and
Pitsch
,
H.
,
2005
, “
Large-Eddy Simulation of Bluff-Body Stabilized Non-Premixed Flame Using a Recursive-Refinement Procedure
,”
Combust. Flame
,
142
(
4
), pp.
329
347
.
10.
Ghosal
,
S.
,
1996
, “
An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence
,”
J. Comput. Phys.
,
125
(
1
), pp.
187
206
.
11.
Chow
,
F.
, and
Moin
,
P.
,
2003
, “
A Further Study of Numerical Errors in Large-Eddy Simulations
,”
J. Comput. Phys.
,
184
(
2
), pp.
366
380
.
12.
Kaul
,
C. M.
,
Raman
,
V.
,
Balarac
,
G.
, and
Pitsch
,
H.
,
2009
, “
Effect of Numerical Errors on Sub-Filter Scalar Variance Models
,”
Phys. Fluids
,
21
(
5
), p.
055102
.
13.
Kaul
,
C. M.
, and
Raman
,
V.
,
2011
, “
A Posteriori Analysis of Numerical Errors in Subfilter Scalar Variance Modeling for Large Eddy Simulation
,”
Phys. Fluids
,
23
(
3
), p.
035102
.
14.
Ham
,
F.
, and
Iaccarino
,
G.
,
2004
, “
Energy Conservation in Collocated Disretization Schemes on Unstructured Meshes
,”
CTR Annual Research Briefs, Center for Turbulence Research
, NASA Ames/Stanford University, Stanford, CA, pp.
3
14
.
15.
OpenFOAM, 2016, “The Open Source CFD Toolbox,”
ESI Group
, Paris.
16.
Geigle
,
K. P.
,
Zerbs
,
J.
,
Köhler
,
M.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2011
, “
Experimental Analysis of Soot Formation and Oxidation in a Gas Turbine Model Combustor Using Laser Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121503
.
17.
Koo
,
H.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Geigle
,
K. P.
,
2015
, “
Large-Eddy Simulation of a Turbulent Sooting Flame in a Swirling Combustor
,”
53rd AIAA Aerospace Science Meeting
,
AIAA
Paper No. 2015-0167.
18.
Mueller
,
M. E.
,
2012
, “
Large Eddy Simulation of Soot Evolution in Turbulent Reacting Flows
,” Ph.D. thesis, Stanford University, Stanford, CA.
19.
Mueller
,
M. E.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2009
, “
Hybrid Method of Moments for Modeling Soot Formation and Growth
,”
Combust. Flame
,
156
(
6
), pp.
1143
1155
.
20.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2011
, “
Large Eddy Simulation Subfilter Modeling of Soot-Turbulence Interactions
,”
Phys. Fluids
,
23
(
11
), p.
115104
.
21.
Blanquart
,
G.
, and
Pitsch
,
H.
,
2009
,
Combustion Generated Fine Carbonaceous Particles
,
Karlsruhe University Press
, Karlsruhe, Germany.
22.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
7
, pp.
1760
1765
.
24.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
59
(
2
), pp.
308
323
.
25.
Akselvoll
,
K.
, and
Moin
,
P.
,
1996
, “
Large Eddy Simulation of Turbulent Confined Coannular Jets
,”
J. Fluid Mech.
,
315
, pp.
387
411
.
26.
Pierce
,
C. D.
,
2001
, “
Progress-Variable Approach for Large-Eddy Simulation of Turbulence Combustion
,”
Ph.D. thesis
, Stanford University, Stanford, CA.
27.
Lietz
,
C.
,
Tang
,
Y.
,
Koo
,
H.
,
Hassanaly
,
M.
, and
Raman
,
V.
,
2015
, “
Large Eddy Simulation of a High-Pressure Multi-Jet Combustor Using Flamelet Modeling
,”
10th OpenFOAM Workshop
.
28.
Morinishi
,
Y.
,
2010
, “
Skew-Symmetric Form of Convective Terms and Fully Conservative Finite Difference Schemes for Variable Density Low-Mach Number Flows
,”
J. Comput. Phys.
,
229
(
2
), pp.
276
300
.
29.
Felten
,
F. N.
, and
Lund
,
T. S.
,
2006
, “
Kinetic Energy Conservation Issues Associated With the Collocated Mesh Scheme for Incompressible Flow
,”
J. Comput. Phys.
,
215
(
2
), pp.
465
484
.
30.
Issa
,
R. I.
,
1985
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
31.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
1997
, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows
,”
J. Comput. Phys.
,
131
(
2
), pp.
310
322
.
32.
Mahesh
,
K.
,
Constantinescu
,
G.
, and
Moin
,
P.
,
2004
, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
,
197
(
1
), pp.
215
240
.
33.
Nicoud
,
F.
,
2000
, “
Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows
,”
J. Comput. Phys.
,
158
(
1
), pp.
71
97
.
34.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
, Chap. 13.3–13.4.
35.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p. 35.
36.
Blanquart
,
G.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels With Emphasis on Soot Precursors
,”
Combust. Flame
,
156
(
3
), pp.
588
607
.
37.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
(
10
), pp.
1879
1898
.
38.
Widenhorn
,
A.
,
Noll
,
B.
,
Stöhr
,
M.
, and
Aigner
,
M.
,
2008
, “
Numerical Characterization of the Non-Reacting Flow in a Swirled Gasturbine Model Combustor
,”
High Performance Computing in Science and Engineering
, Springer, Stuttgart, Germany, pp.
431
444
.
39.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Numerical Characterization of a Gas Turbine Model Combustor
,”
High Performance Computing in Science and Engineering
, Springer, Stuttgart, Germany, pp.
179
195
.
You do not currently have access to this content.