Swirling jets undergoing vortex breakdown are widely used in combustion applications, due to their ability to provide aerodynamic flame stabilization. It is well known that vortex breakdown is accompanied by a dominant coherent structure, the so-called precessing vortex core (PVC). Reports on the impact of the PVC on the combustion process range from beneficial to detrimental. In any event, efficient methods for the analysis of the PVC help to increase the benefit or reduce the penalty resulting from it. This study uses particle image velocimetry (PIV) measurements of a generic nonisothermal swirling jet to demonstrate the use of advanced data analysis techniques. In particular, the finite time Lyapunov exponent (FTLE) and the local linear stability analysis (LSA) are shown to reveal deep insight into the physical mechanisms that drive the PVC. Particularly, it is demonstrated that the PVC amplitude is strongly reduced, if heating is applied at the wavemaker of the flow. These techniques are complemented by the traditionally used proper orthogonal decomposition (POD) and spatial correlation techniques. It is demonstrated how these methods complement each other and lead to a comprehensive understanding of the PVC that lays out the path to efficient control strategies.

References

References
1.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
2.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.
3.
Billant
,
P.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.
4.
Ruith
,
M. R.
,
Chen
,
P.
,
Meiburg
,
E.
, and
Maxworthy
,
T.
,
2003
, “
Three-Dimensional Vortex Breakdown in Swirling Jets and Wakes: Direct Numerical Simulation
,”
J. Fluid Mech.
,
486
, pp.
331
378
.
5.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
6.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.
7.
Fric
,
T. F.
,
1993
, “
Effects of Fuel-Air Unmixedness on NO(x) Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.
8.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.
9.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.
10.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.
11.
Terhaar
,
S.
,
Reichel
,
T. G.
,
Schrödinger
,
C.
,
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2014
, “
Vortex Breakdown Types and Global Modes in Swirling Combustor Flows With Axial Injection
,”
J. Propul. Power
,
31
(
1
), pp.
219
229
.
12.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(Cambridge Monographs on Mechanics),
Cambridge University Press
,
Cambridge, UK
.
13.
Gallaire
,
F.
,
Ruith
,
M. R.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
, pp.
71
80
.
14.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett
,
75
(
5
), pp.
750
756
.
15.
Leontini
,
J. S.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
,
2010
, “
A Numerical Study of Global Frequency Selection in the Time-Mean Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
645
, pp.
435
446
.
16.
Viola
,
F.
,
Iungo
,
G. V.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
,
2014
, “
Prediction of the Hub Vortex Instability in a Wind Turbine Wake: Stability Analysis With Eddy-Viscosity Models Calibrated on Wind Tunnel Data
,”
J. Fluid Mech.
,
750
, pp.
R1-1
R1-12
.
17.
Paredes
,
P.
,
Terhaar
,
S.
,
Oberleithner
,
K.
,
Theofilis
,
V.
, and
Oliver Paschereit
,
C.
,
2016
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021504
.
18.
Chigier
,
N. A.
, and
Chervinsky
,
A.
,
1967
, “
Experimental Investigation of Swirling Vortex Motion in Jets
,”
ASME J. Appl. Mech.
,
34
(
2
), pp.
443
451
.
19.
Oberleithner
,
K.
,
Seele
,
R.
,
Paschereit
,
C. O.
, and
Wygnanski
,
I.
,
2012
, “
The Formation of Turbulent Vortex Breakdown: Intermittency, Criticality, and Global Instability
,”
AIAA J.
,
50
(
7
), pp.
1437
1452
.
20.
Monkewitz
,
P. A.
,
Bechert
,
D. W.
,
Barsikow
,
B.
, and
Lehmann
,
B.
,
1990
, “
Self-Excited Oscillations and Mixing in a Heated Round Jet
,”
J. Fluid Mech.
,
213
, pp.
611
639
.
21.
Willert
,
C.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
193
.
22.
Scarano
,
F.
,
2002
, “
Iterative Image Deformation Methods in PIV
,”
Meas. Sci. Technol.
,
13
(
1
), p.
R1
.
23.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z.-C.
,
1997
, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), p.
1441
.
24.
Stanislas
,
M.
,
Okamoto
,
K.
,
Kähler
,
C.
,
Westerweel
,
J.
, and
Scarano
,
F.
,
2008
, “
Main Results of the Third International PIV Challenge
,”
Exp. Fluids
,
45
(
1
), pp.
27
71
.
25.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin, Heidelberg.
26.
Burns
,
G. W.
,
Scroger
,
M. G.
,
Strouse
,
G. F.
,
Croarkin
,
M. C.
, and
Guthrie
,
W. F.
,
1993
, “
Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90
,” United States Department of Commerce, Gaithersburg, MD,
NIST Monograph 172
.http://adsabs.harvard.edu/abs/1993STIN...9331214B
27.
Reynolds
,
W. C.
, and
Hussain
,
A. K. M. F.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.
28.
Rukes
,
L.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2015
, “
Effect of Initial Vortex Core Size on the Coherent Structures in the Swirling Jet Near Field
,”
Exp. Fluids
,
56
(
10
), pp. 1–28.
29.
Haller
,
G.
,
2001
, “
Lagrangian Structures and the Rate of Strain in a Partition of Two-Dimensional Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
3365
3385
.
30.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Ann. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.
31.
Lesshafft
,
L.
, and
Huerre
,
P.
,
2007
, “
Linear Impulse Response in Hot Round Jets
,”
Phys. Fluids
,
19
(
2
), p. 024102.
32.
Khorrami
,
M. R.
,
Malik
,
M. R.
, and
Ash
,
R. L.
,
1989
, “
Application of Spectral Collocation Techniques to the Stability of Swirling Flow
,”
J. Comput. Phys.
,
81
(
1
), pp.
206
229
.
33.
Chomaz
,
J. M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1988
, “
Bifurcations to Local and Global Modes in Spatially Developing Flows
,”
Phys. Rev. Lett.
,
60
(
1
), pp.
25
28
.
34.
Emerson
,
B.
,
O'Connor
,
J.
,
Juniper
,
M.
, and
Lieuwen
,
T.
,
2012
, “
Density Ratio Effects on Reacting Bluff-Body Flow Field Characteristics
,”
J. Fluid Mech.
,
706
, pp.
219
250
.
35.
Falese
,
M.
,
2013
, “
A Study of the Effects of Bifurcations in Swirling Flows Using Large Eddy Simulation and Mesh Adaptation
,”
Ph.D. thesis
, CERFACS, Toulouse, France.https://tel.archives-ouvertes.fr/tel-00920462/
36.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
, pp.
71
107
.
37.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
38.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), p.
182
.
39.
Oberleithner
,
K.
,
Schimek
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.
40.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2014
, “
Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors
,”
Combust. Sci. Technol.
,
186
(
7
), pp.
889
911
.
41.
Khorrami
,
M. R.
,
1995
, “
Stability of a Compressible Axisymmetric Swirling Jet
,”
AIAA J.
,
33
(
4
), pp.
650
658
.
42.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.
You do not currently have access to this content.