An efficient method is proposed for the multiharmonic frequency-domain analysis of the stability for nonlinear periodic forced vibrations in gas turbine engine structures and turbomachines with friction, gaps, and other types of nonlinear contact interfaces. The method allows using large-scale finite element models for structural components together with detailed description of nonlinear interactions at contact interfaces between these components. The highly accurate reduced models are applied in the assessment of stability of periodic regimes for large-scale model of gas turbine structures. An approach is proposed for the highly accurate calculation of motion of a structure after it is perturbed from the periodic nonlinear forced response. Efficiency of the developed approach is demonstrated on a set of test cases including simple models and large-scale realistic bladed disk models with different types of nonlinearities: friction, gaps, and cubic nonlinear springs.

References

References
1.
Sanliturk
,
K. Y.
,
Imregun
,
M.
, and
Ewins
,
D. J.
,
1997
, “
Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
96
103
.
2.
Chen
,
J.
, and
Menq
,
C.
,
2001
, “
Prediction of Periodic Response of Blades Having 3D Nonlinear Shroud Constraints
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
901
909
.
3.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Discs
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.
4.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2012
, “
Numerical Assessment of Friction Damping at Turbine Blade Root Joints by Simultaneous Calculation of the Static and Dynamic Contact Loads
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1943
1955
.
5.
Laborenz
,
J.
,
Krack
,
M.
,
Panning
,
L.
, and
Masserey
,
P. A.
,
2012
, “
Eddy Current Damper for Turbine Blading: Electromagnetic Finite Element Analysis and Measurement Results
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042504
.
6.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p. 082504.
7.
Petrov
,
E.
,
2015
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas-Turbine Engine Structures With Friction and Gaps
,”
ASME
Paper No. GT2015-43670.
8.
Floquet
,
G.
,
1883
, “
Sur les équations différentielles linéaires à coefficients périodiques
,”
Ann. Sci. Ec. Norm. Supér.
12
, pp.
47
88
.
9.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2013
, “
A Comparison of Stability Computational Methods for Periodic Solution of Nonlinear Problems With Application to Rotordynamics
,”
Nonlinear Dyn.
,
72
(
3
), pp.
671
682
.
10.
Moore
,
G.
,
2005
, “
Floquet Theory as a Computational Tool
,”
SIAM J. Numer. Anal.
,
42
(
6
), pp.
2522
2568
.
11.
DaCunha
,
J.
, and
Davis
,
J.
,
2011
, “
A Unified Floquet Theory for Discrete, Continuous, and Hybrid Periodic Linear Systems
,”
J. Differ. Equations
,
251
(
11
), pp.
2987
3027
.
12.
Lewandowski
,
R.
,
1997
, “
Computational Formulation for Periodic Vibration of Geometrically Nonlinear Structures—1: Theoretical Background
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1925
1947
.
13.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
14.
Demir
,
A.
,
2003
, “
A Reliable and Efficient Procedure for Oscillator PPV Computation, With Phase Noise Macromodeling Applications
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
22
(
2
), pp.
188
197
.
15.
Zhou
,
J.
,
Hagiwara
,
T.
, and
Araki
,
M.
,
2004
, “
Spectral Characteristics and Eigenvalues Computation of the Harmonic State Operators in Continuous-Time Periodic Systems
,”
Syst. Control Lett.
,
53
(
2
), pp.
141
155
.
16.
Deconinck
,
B.
, and
Kutz
,
J. N.
,
2006
, “
Computing Spectra of Linear Operators Using the Floquet–Fourier–Hill Method
,”
J. Comput. Phys.
,
219
(
1
), pp.
296
321
.
17.
Traversa
,
F. L.
,
Bonani
,
F.
, and
Guerrieri
,
S. D.
,
2008
, “
A Frequency-Domain Approach to the Analysis of Stability and Bifurcation in Nonlinear Systems Described by Differential Algebraic Equations
,”
Int. J. Circuit Theory Appl.
,
36
(
4
), pp.
421
439
.
18.
Villa
,
C.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
804
821
.
19.
Lazarus
,
A.
, and
Thomas
,
O.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Solutions of Dynamical Systems
,”
C. R. Mec.
,
338
(
9
), pp.
510
517
.
20.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.
21.
Petrov
,
E. P.
,
2011
, “
A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
133
(11), p. 102503.
You do not currently have access to this content.