The power output of steam turbines is controlled by steam turbine inlet valves. These valves have a large flow capacity and dissipate a huge amount of energy in throttled operation. The dissipation process generates strong pressure fluctuations resulting in high dynamic forces causing valve vibrations. A brief survey of the literature dealing with valve vibrations reveals that the vibrational problems and damages mostly occur in throttled operation when high speed jets, shocks, and shear layers are present. As previous investigations reveal that a feedback mechanism between the dynamic flow field and the vibrating valve plug exists, the vibrations are investigated with two-way coupled simulations. The fluid dynamics are solved with a scale-adaptive approach to resolve the pressure fluctuations generated by the turbulent flow. The finite element model (FEM) solving the structural dynamics considers both frictional effects at the valve packing and contact effects caused by the plug impacting on the valve bushing. As different flow topologies causing diverse dynamic loads exist, the fluid flow and the structural dynamics are simulated at different operating points. The simulations show that differences to the one-way-coupled approach exist leading to a change of the vibrational behavior. The physics behind the feedback mechanisms causing this change are analyzed and conclusions regarding the accuracy of the one-way-coupled approach are drawn.

References

References
1.
Pluviose
,
M.
,
2013
, “
Quieting the Flows in Valves Using Kinetic Energy Degraders
,”
Int. J. Thermodyn.
,
16
(
3
), pp.
109
114
.
2.
Zaryankin
,
A. E.
, and
Simonov
,
B. P.
,
2000
, “
New Control Valves for Steam Turbines, Their Characteristics and Experience With Their Operation
,”
Therm. Eng.
,
43
(
1
), pp.
19
24
.
3.
Zhang
,
D.
,
Engeda
,
A.
,
Hardin
,
J. R.
, and
Augnier
,
R. H.
,
2004
, “
Experimental Study of Steam Turbine Control Valves
,”
Proc. Inst. Mech. Eng. C
,
218
(
5
), pp.
493
507
.
4.
Tecza
,
J.
,
Chochua
,
G.
, and
Moll
,
R.
,
2010
, “
Analysis of Fluid-Structure Interaction in a Steam Turbine Throttle Valve
,”
ASME
Paper No. GT2010-23788.
5.
Kostyuk
,
A. G.
,
Kumenko
,
A. I.
,
Nekrasov
,
A. L.
,
Kalinin
,
S. V.
, and
Medvedev
,
S. V.
,
2000
, “
An Experimental Analysis of Pressure Pulsations in the Steam Admission System of a Turbine Installation
,”
Therm. Eng
,
47
(
6
), pp.
529
537
.
6.
Michaud
,
S.
,
Ziada
,
S.
, and
Pastorel
,
H.
,
2001
, “
Acoustic Fatigue of a Steam Dump Pipe System Excited by Valve Noise
,”
ASME J. Pressure Vessel Technol.
,
123
(
4
), pp.
461
468
.
7.
Ziada
,
S.
, and
Bühlmann
,
E. T.
,
1989
, “
Flow Impingement as an Excitation Source in Control Valves
,”
J. Fluids Struct.
,
3
(
5
), pp.
529
549
.
8.
Nakano
,
M.
,
Outa
,
K.
, and
Tajima
,
K.
,
1988
, “
Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve
,”
ASME J. Fluids. Eng.
,
110
(
1
), pp.
55
61
.
9.
Jones
,
T. M.
,
Larko
,
J. M.
, and
McNellis
,
M. E.
,
2010
, “
Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure
,”
NASA Technical Report No. NASA/TM-2010-216339
.
10.
Darwish
,
M.
, and
Bates
,
C. L.
,
1977
, “
Flow Vortex Shedding Forces in Check Valves
,”
Advances in Instrumentation, ISA Conference and Exhibit
, Vol.
32
, pp.
79
94
.
11.
Zhang
,
D.
, and
Engeda
,
A.
,
2003
, “
Venturi Valves for Steam Turbines and Improved Design Considerations
,”
Proc. Inst. Mech. Eng. Part A
,
217
(2), pp.
66
74
.
12.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2004
, “
CFD Calculation and Experiments of Unsteady Flow on Control Valve
,”
ASME
Paper No. HT-FED04-56017.
13.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2005
, “
Flow-Induced Vibration of a Steam Control Valve in Middle-Opening Condition
,”
ASME
Paper No. PVP2005-71334.
14.
Yonezawa
,
K.
,
Ogawa
,
R.
,
Ogi
,
K.
,
Takino
,
T.
,
Tsujimoto
,
Y.
,
Endo
,
T.
,
Tezuka
,
K.
,
Morita
,
R.
, and
Inada
,
F.
,
2012
, “
Flow-Induced Vibration of a Steam Control Valve
,”
J. Fluids Struct.
,
35
, pp.
76
88
.
15.
Heymann
,
F. J.
, and
Statiano
,
M. A.
,
1973
, “
Steam Turbine Control Valve Noise
,”
85th Meeting of the Acoustical Society of America
, Paper No. M-8.
16.
Clari
,
M. B.
,
Polklas
,
T.
, and
Joos
,
F.
,
2011
, “
Three-Dimensional Flow Separations in the Diffuser of a Steam Turbine Control Valve
,”
ASME
Paper No. GT2011-45617.
17.
Schramm
,
A.
,
Müller
,
T.
,
Polklas
,
T.
,
Brunn
,
O.
, and
Mailach
,
R.
,
2014
, “
Unsteady Flow in Extraction Modules of Industrial Steam Turbines
,”
ASME
Paper No. GT2014-25394.
18.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2014
, “
Numerical Investigation on Under Expanded Wall Jet Separation in a Steam Turbine Valve Diffusor
,” ISROMAC 15, Paper No. TU305.
19.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
, and
Musch
,
C.
,
2015
, “
Modification of a Steam Valve Diffuser for Enhanced Full Load and Part Load Operation Using Numerical Methods
,”
Conference on Modeling Fluid Flow
(
CMFF15
), Budapest, Hungary, Sept. 1–4, Paper No. 41.
20.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2014
, “
Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081601
.
21.
Stastny
,
M.
,
Bednar
,
L.
,
Tajc
,
L.
,
Kolar
,
P.
,
Martinu
,
P.
, and
Matas
,
R.
,
2003
, “
Pulsating Flows in the Inlet of a Nuclear Steam Turbine
,”
5th European Conference on Turbomachinery
, Prague, Czech Republic, pp.
677
686
.
22.
Pluviose
,
M.
,
1989
, “
Stabilization of Flow Through Steam-Turbine Control Valves
,”
ASME J. Gas Eng. Turbines Power
,
111
(4), pp.
642
646
.
23.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Advances in Hybrid RANS-LES Modelling
,
S.-H.
Peng
and
W.
Haase
, eds.,
Springer-Verlag
,
Berlin, Germany
, pp.
261
270
.
24.
Zanazzi
,
G.
,
Schäfer
,
O.
,
Sell
,
M.
, and
Ridoutt
,
C.
,
2013
, “
Unsteady CFD Simulation of Control Valve in Throttling Conditions and Comparison With Experiments
,”
ASME
Paper No. GT2013-94788.
25.
Bianchini
,
C.
,
Da Soghe
,
R.
,
Cosi
,
L.
, and
Imparato
,
E.
,
2015
, “
Aeroacoustic Computational Analysis of a Steam Turbine Trip Valve
,”
ASME
Paper No. GT2015-42473.
26.
Musch
,
C.
,
Deister
,
F.
,
Zimmer
,
G.
,
Balkowski
,
I.
, and
Brüggemann
,
P.
,
2014
, “
A New Emergency Stop and Control Valve Design-Part 2: Validation of Numerical Model and Transient Flow Physics
,”
ASME
Paper No. GT2014-25117.
27.
Menter
,
F. R.
,
Garbaruk
,
A.
,
Smirnov
,
P.
,
Cokljat
,
D.
, and
Mathey
,
F.
,
2010
, “
Scale-Adaptive Simulation With Artificial Forcing
,”
Progress in Hybrid RANS-LES-Modelling
,
S.-H.
Peng
, ed.,
Springer-Verlag
,
Berlin, Germany
, pp.
235
246
.
28.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Vibration of Steam Turbine Inlet Valves and the Feedback to the Dynamic Flow Field
,”
ASME
Paper No. GT2015-42182.
29.
Erödi
,
I. T.
, and
Hös
,
C.
,
2015
, “
CFD Simulation on the Dynamics of a Direct Spring Operated Pressure Relief Valve
,”
Conference on Modeling Fluid Flow
(
CMFF15
), Budapest, Hungary, Sept. 1–4, Paper No. 103.
You do not currently have access to this content.