Finite element simulations based on an interface cohesive zone model (CZM) have been developed to mimic the interfacial cracking behavior between the αAl2O3 thermally grown oxide (TGO) and the aluminum-rich Pt–Al metallic bond coat (BC) during cooling from high temperature to ambient temperature. A two-dimensional half-periodic sinusoidal geometry corresponding to interface undulation is modeled. The effects of TGO thickness and interface asperity on the stress distribution and the cracking behavior are examined by parametric studies. The simulation results show that cracking behavior due to residual stress and interface asperity during cooling process leads to stress redistribution around the rough interface. The TGO thickness has strong influence on the maximum tensile stress of TGO and the interfacial crack development. For the sinusoidal asperities, there exists a critical amplitude above which the interfacial cracking is energetically favored. For any specific TGO thickness, crack initiation is dominated by the amplitude while crack propagation is restricted to the combine actions of the wavelength and the amplitude of the sinusoidal asperity.

References

References
1.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
2.
Kumar
,
V.
, and
Balasubramanian
,
K.
,
2016
, “
Progress Update on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review
,”
Prog. Org. Coat.
,
90
, pp.
54
82
.
3.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meierc
,
G. H.
, and
Pettitc
,
F. S.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
5
), pp.
505
553
.
4.
Beck
,
T.
,
Herzog
,
R.
,
Trunova
,
O.
,
Offermanna
,
M.
,
Steinbrecha
,
R. W.
, and
Singheisera
,
L.
,
2008
, “
Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modeling
,”
Surf. Coat. Technol.
,
202
(
24
), pp.
5901
5908
.
5.
Białas
,
M.
,
2008
, “
Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
202
(
24
), pp.
6002
6010
.
6.
Davis
,
A. W.
, and
Evans
,
A. G.
,
2006
, “
Effects of Bond Coat Misfit Strains on the Rumpling of Thermally Grown Oxides
,”
Metall. Mater. Trans. A
,
37
(
7
), pp.
2085
2095
.
7.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
,
2000
, “
Surface Rumpling of a (Ni, Pt) Al Bond Coat Induced by Cyclic Oxidation
,”
Acta Mater.
,
48
(
13
), pp.
3283
3293
.
8.
Clarke
,
D. R.
, and
Pompe
,
W.
,
1999
, “
Critical Radius for Interface Separation of a Compressively Stressed Film From a Rough Surface
,”
Acta Mater.
,
47
(
6
), pp.
1749
1756
.
9.
Al-Athel
,
K.
,
Loeffel
,
K.
,
Liu
,
H.
, and
Anand
,
L.
,
2013
, “
Modeling Decohesion of a Top-Coat From a Thermally-Growing Oxide in a Thermal Barrier Coating
,”
Surf. Coat. Technol.
,
222
, pp.
68
78
.
10.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
,
2000
, “
Spalling Failure of α-Alumina Films Grown by Oxidation. II. Decohesion Nucleation and Growth
,”
Mater. Sci. Eng., A
,
278
(
1
), pp.
151
161
.
11.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Mariaux
,
G.
, and
Shahidi
,
S.
,
2010
, “
Effect of Residual Stresses and Prediction of Possible Failure Mechanisms on Thermal Barrier Coating System by Finite Element Method
,”
J. Therm. Spray Technol.
,
19
(
5
), pp.
1054
1061
.
12.
Selcuk
,
A.
, and
Atkinson
,
A.
,
2003
, “
The Evolution of Residual Stress in the Thermally Grown Oxide on Pt Diffusion Bond Coats in TBCs
,”
Acta Mater.
,
51
(
2
), pp.
535
549
.
13.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Mariaux
,
G.
, and
Dubois
,
F.
,
2010
, “
Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method
,”
Mater. Des.
,
31
(
2
), pp.
772
781
.
14.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Mariaux
,
G.
, and
Smith
,
D. S.
,
2011
, “
Crack Propagation Modeling on the Interfaces of Thermal Barrier Coating System With Different Thickness of the Oxide Layer and Different Interface Morphologies
,”
Mater. Des.
,
32
(
10
), pp.
4961
4969
.
15.
Ranjbar-Far
,
M.
,
Absi
,
J.
, and
Mariaux
,
G.
,
2012
, “
Finite Element Modeling of the Different Failure Mechanisms of a Plasma Sprayed Thermal Barrier Coatings System
,”
J. Therm. Spray Technol.
,
21
(
6
), pp.
1234
1244
.
16.
Moridi
,
A.
,
Azadi
,
M.
, and
Farrahi
,
G. H.
,
2014
, “
Thermo-Mechanical Stress Analysis of Thermal Barrier Coating System Considering Thickness and Roughness Effects
,”
Surf. Coat. Technol.
,
243
, pp.
91
99
.
17.
Trunova
,
O.
,
Beck
,
T.
,
Herzog
,
R.
,
Steinbrecha
,
R. W.
, and
Singheiser
,
L.
,
2008
, “
Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part I: Experiments
,”
Surf. Coat. Technol.
,
202
(
20
), pp.
5027
5032
.
18.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Shahidi
,
S.
, and
Mariaux
,
G.
,
2011
, “
Impact of the Non-Homogenous Temperature Distribution and the Coatings Process Modeling on the Thermal Barrier Coatings System
,”
Mater. Des.
,
32
(
2
), pp.
728
735
.
19.
Soulignac
,
R.
,
Maurel
,
V.
,
Rémy
,
L.
, and
Köster
,
A.
,
2013
, “
Cohesive Zone Modelling of Thermal Barrier Coatings Interfacial Properties Based on Three-Dimensional Observations and Mechanical Testing
,”
Surf. Coat. Technol.
,
237
, pp.
95
104
.
20.
Zhu
,
W.
,
Yang
,
L.
,
Guo
,
J. W.
,
Zhou
,
Y. C.
, and
Lu
,
C.
,
2015
, “
Determination of Interfacial Adhesion Energies of Thermal Barrier Coatings by Compression Test Combined With a Cohesive Zone Finite Element Model
,”
Int. J. Plast.
,
64
, pp.
76
87
.
21.
Wright
,
J. K.
,
Williamson
,
R. L.
,
Renusch
,
D.
,
Vealb
,
B.
,
Grimsditchb
,
M.
,
Houc
,
P. Y.
, and
Cannon
,
R. M.
,
1999
, “
Residual Stresses in Convoluted Oxide Scales
,”
Mater. Sci. Eng., A
,
262
(
1
), pp.
246
255
.
22.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
(
1
), pp.
21
40
.
23.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic–Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
24.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2827
2855
.
25.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Compos. Part B: Eng.
,
29
(
5
), pp.
589
602
.
26.
Camanho
,
P. P.
, and
Dávila
,
C. G.
,
2002
, “
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
,” NASA, Washington, DC, Technical Memorandum TM-2002-211737.
27.
Su
,
L.
,
Zhang
,
W.
,
Sun
,
Y.
, and
Wang
,
T. J.
,
2014
, “
Effect of TGO Creep on Top-Coat Cracking Induced by Cyclic Displacement Instability in a Thermal Barrier Coating System
,”
Surf. Coat. Technol.
,
254
, pp.
410
417
.
28.
Hille
,
T. S.
,
Suiker
,
A. S. J.
, and
Turteltaub
,
S.
,
2009
, “
Microcrack Nucleation in Thermal Barrier Coating Systems
,”
Eng. Fract. Mech.
,
76
(
6
), pp.
813
825
.
29.
Di Leo
,
C. V.
,
Luk-Cyr
,
J.
,
Liu
,
H.
,
Loeffel
,
K.
,
Al-Athel
,
K.
, and
Anand
,
L.
,
2014
, “
A New Methodology for Characterizing Traction–Separation Relations for Interfacial Delamination of Thermal Barrier Coatings
,”
Acta Mater.
,
71
, pp.
306
318
.
30.
Sengupta
,
A.
,
Putatunda
,
S. K.
,
Bartosiewicz
,
L.
,
Hangas
,
J.
,
Nailos
,
P. J.
,
Peputapeck
,
M.
, and
Alberts
,
F. E.
,
1994
, “
Tensile Behavior of a New Single-Crystal Nickel-Based Superalloy (CMSX-4) at Room and Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
3
(
1
), pp.
73
81
.
31.
Wu
,
R. T.
,
Wang
,
X.
, and
Atkinson
,
A.
,
2010
, “
On the Interfacial Degradation Mechanisms of Thermal Barrier Coating Systems: Effects of Bond Coat Composition
,”
Acta Mater.
,
58
(
17
), pp.
5578
5585
.
You do not currently have access to this content.