Many rotor assemblies of industrial turbomachines are supported by oil-lubricated bearings. It is well known that the operation safety of these machines is highly dependent on rotors whose stability is closely related to the whirling motion of lubricant oil. In this paper, the problem of transverse motion of rotor systems considering bearing nonlinearity is revisited. A symmetric, rigid Jeffcott rotor is modeled considering unbalanced mass and short bearing forces. A semi-analytical, seminumerical approach is presented based on the generalized harmonic balance method (GHBM) and the Newton–Raphson iteration scheme. The external load of the system is decomposed into a Fourier series with multiple harmonic loads. The amplitude and phase with respect to each harmonic load are solved iteratively. The stability of the motion response is analyzed through identification of eigenvalues at the fixed point mapped from the linearized system using harmonic amplitudes. The solutions of the present approach are compared to those from time-domain numerical integrations using the Runge–Kutta method, and they are found to be in good agreement for stable periodic motions. It is revealed through bifurcation analysis that evolution of the motion in the nonlinear rotor-bearing system is complicated. The Hopf bifurcation (HB) of synchronous vibration initiates oil whirl with varying mass eccentricity. The onset of oil whip is identified when the saddle-node bifurcation of subsynchronous vibration takes place at the critical value of parameter.

References

References
1.
Childs
,
D.
,
Moes
,
H.
, and
Van Leeuwen
,
H.
,
1977
, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Tribol.
,
99
(
2
), pp.
198
210
.
2.
Capone
,
G.
,
1986
, “
Orbital Motions of Rigid Symmetric Rotor Supported on Journal Bearings
,”
Mecc. Ital.
,
199
, pp.
37
46
.
3.
Capone
,
G.
,
1991
, “
Analytical Description of Fluid-Dynamic Force Field in Cylindrical Journal Bearing
,”
Energ. Elettr.
,
3
, pp.
105
110
.
4.
Diken
,
H.
,
2001
, “
Non-Linear Vibration Analysis and Subharmonic Whirl Frequencies of the Jeffcott Rotor Model
,”
J. Sound Vib.
,
243
(
1
), pp.
117
125
.
5.
De Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2006
, “
Rotor-Bearing System Instabilities Considering a Non-Linear Hydrodynamic Model
,”
7th IFToMM-Conference on Rotor Dynamics
, Vienna, Austria, Paper No. ID-136.
6.
Muszynska
,
A.
,
1986
, “
Whirl and Whip—Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.
7.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.
8.
Crandall
,
S.
,
1990
, “
From Whirl to Whip in Rotordynamics
,”
IFToMM Third International Conference on Rotordynamics
, Lyon, France, Sept. 10–12, pp.
19
26
.
9.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
, New York, Chap. 3.
10.
Jing
,
J.
,
Meng
,
G.
,
Sun
,
Y.
, and
Xia
,
S.
,
2004
, “
On the Non-Linear Dynamic Behavior of a Rotor-Bearing System
,”
J. Sound Vib.
,
274
(
3
), pp.
1031
1044
.
11.
Jing
,
J.
,
Meng
,
G.
,
Sun
,
Y.
, and
Xia
,
S.
,
2005
, “
On the Oil-Whipping of a Rotor-Bearing System by a Continuum Model
,”
Appl. Math. Modell.
,
29
(
5
), pp.
461
475
.
12.
De Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force Model
,”
J. Sound Vib.
,
317
(
1
), pp.
273
293
.
13.
Tseng
,
W. Y.
, and
Dugundji
,
J.
,
1970
, “
Nonlinear Vibrations of a Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
37
(
2
), pp.
292
297
.
14.
Evensen
,
D. A.
,
1967
, “
Nonlinear Flexural Vibrations of Thin-Walled Circular Cylinders
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA
TN D-4090.https://archive.org/details/NASA_NTRS_Archive_19670024117
15.
Choi
,
Y. S.
, and
Noah
,
S. T.
,
1987
, “
Nonlinear Steady-State Response of a Rotor-Support System
,”
ASME J. Vib. Acoust.
,
109
(
3
), pp.
255
261
.
16.
Choi
,
S. K.
, and
Noah
,
S. T.
,
1994
, “
Mode-Locking and Chaos in a Jeffcott Rotor With Bearing Clearances
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
131
138
.
17.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.
18.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1996
, “
Quasi-Periodic Response and Stability Analysis for a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.
19.
Chen
,
Y. S.
, and
Meng
,
Q.
,
1996
, “
Bifurcations of a Nonlinear Rotor-Bearing System
,”
J. Vib. Eng.
,
9
(
3
), pp.
266
275
.
20.
Chu
,
F.
, and
Zhang
,
Z.
,
1998
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
.
21.
Huang
,
J. Z.
, and
Luo
,
A. C. J.
,
2014
, “
Analytical Periodic Motions and Bifurcations in a Nonlinear Rotor System
,”
Int. J. Dyn. Control
,
2
(
3
), pp.
425
459
.
22.
Huang
,
J. Z.
, and
Luo
,
A. C. J.
,
2015
, “
Periodic Motions and Bifurcation Trees in a Buckled, Nonlinear Jeffcott Rotor System
,”
Int. J. Bifurcation Chaos
,
25
(
1
), p.
1550002
.
23.
Huang
,
J. Z.
, and
Luo
,
A. C. J.
, “
Analytical Solutions of Period-1 Motions in a Buckled, Nonlinear Jeffcott Rotor System
,”
Int. J. Dyn. Control
(in press).
24.
Wang
,
Y. F.
, and
Liu
,
Z. W.
,
2015
, “
A Matrix-Based Computational Scheme of Generalized Harmonic Balance Method for Periodic Solutions of Nonlinear Vibratory Systems
,”
J. Appl. Nonlinear Dyn.
,
4
(
4
), pp.
379
389
.
25.
Wang
,
Y. F.
, and
Liu
,
Z. W.
,
2015
, “
Numerical Scheme for Period-M Motion of Second-Order Nonlinear Dynamical Systems Based on Generalized Harmonic Balance Method
,”
Nonlinear Dyn.
,
84
(
1
), pp.
323
340
.
26.
Ng
,
C. W.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
675
688
.
You do not currently have access to this content.