The adoption of lean-burn technology in modern aero-engines influences the already critical aerothermal conditions at turbine entry, where the absence of dilution holes preserves the swirl component generated by burners and prevents any control on pattern factor. The associated uncertainty and lack of confidence entail the application of wide safety margins in turbine cooling design, with a detrimental effect on engine efficiency. Computational fluid dynamics (CFD) can provide a deeper understanding of the physical phenomena involved in combustor–turbine interaction, especially with hybrid Reynolds-averaged Navier–Stokes (RANS) large eddy simulation (LES) models, such as scale adaptive simulation (SAS), which are proving to overcome the well-known limitations of the RANS approach and be a viable approach to capture the complex flow physics. This paper describes the numerical investigation on a test rig representative of a lean-burn, effusion cooled, annular combustor developed in the EU Project Full Aerothermal Combustor-Turbine interactiOns Research (FACTOR) with the aim of studying combustor–turbine interaction. Results obtained with RANS and SAS were critically compared to experimental data and analyzed to better understand the flow physics, as well as to assess the improvements related to the use of hybrid RANS-LES models. Significant discrepancies are highlighted for RANS in predicting the recirculating region, which has slight influence on the velocity field at the combustor outlet, but affects dramatically mixing and the resulting temperature distribution. The accuracy of the results achieved suggests the exploitation of SAS model with a view to the future inclusion of the nozzle guide vanes in the test rig.

References

1.
Cha
,
C. M.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
2.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
3.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.
4.
Pyliouras
,
S.
,
Schiffer
,
H. P.
,
Janke
,
E.
, and
Willer
,
L.
,
2012
, “
Effects of Non-Uniform Combustor Exit Flow on Turbine Aerodynamics
,”
ASME
Paper No. GT2012-69327.
5.
Salvadori
,
S.
,
Ottanelli
,
L.
,
Jonsson
,
M.
,
Ott
,
P.
, and
Martelli
,
F.
,
2012
, “
Investigation of High-Pressure Turbine Endwall Film-Cooling Performance Under Realistic Inlet Conditions
,”
J. Propul. Power
,
28
(
4
), pp.
799
810
.
6.
Werschnik
,
H.
,
Krichbaum
,
A.
, and
Schiffer
,
H.-P.
,
2015
, “
The Influence of Combustor Swirl on Turbine Stator Endwall Heat Transfer and Film Cooling Effectiveness in a 1.5-Stage Axial Turbine
,” ISABE, ISABE Paper No. 2015-20184.
7.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2014
, “
Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions
,”
ASME
Paper No. GT2014-25280.
8.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Clocking Effects of Inlet Non-Uniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021006
.
9.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T.
,
Bissieres
,
D.
, and
Berat
,
C.
,
2007
, “
Comparison of LES, RANS and Experiments in an Aeronautical Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3075
3082
.
10.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.
11.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,” 1st
AFOSR
International Conference on DNS/LES
.
12.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2006
, “
Re-Visiting the Turbulent Scale Equation
,”
IUTAM Symposium on One Hundred Years of Boundary Layer Research
,
Springer, Dordrecht
,
The Netherlands
.
13.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2004
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.
14.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
15.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Study of a No-Reacting Turbulent Flow in a Gas Turbine Model Combustor
,”
AIAA
Paper No. 2009-647.
16.
Mazzei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Turrini
,
F.
,
2015
, “
Impact of Swirl Flow on Combustor Liner Heat Transfer and Cooling: A Numerical Investigation With Hybrid Reynolds-Averaged Navier Stokes-Large Eddy Simulation Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051504
.
17.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2015-42402.
18.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
19.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
20.
Koupper
,
C.
,
Bonneau
,
G.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p.
111017
.
21.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
22.
Lilley
,
D. G.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.
23.
Koupper
,
C.
,
Bonneau
,
G.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulations of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
ASME
Paper No. GT2016-56443.
24.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Bonneau
,
G.
,
2015
, “
Turbulence Field Measurements at the Exit of an Engine Representative Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
25.
Koupper
,
C.
,
Bonneau
,
G.
,
Bacci
,
T.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2015
, “
Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator
,”
ASME
Paper No. GT2015-42278.
26.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.
27.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
28.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,”
ANSYS
Germany, Darmstadt, Germany
.
29.
ANSYS
,
2015
, “
Fluent Theory Guide
,” Release 16.0, ANSYS, Canonsburg, PA.
30.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.
31.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
1
24
.
32.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.
33.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Characterization of the Reacting Flow in a Swirled Gasturbine Model Combustor
,”
High Performance Computing in Science and Engineering’08
,
Springer
,
Berlin
, pp.
365
380
.
34.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2016
, “
Assessment of Scale Resolved CFD Methods for the Investigation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
(accepted).
You do not currently have access to this content.