Premixed combustion is a common technology applied in modern gas turbine combustors to minimize nitrogen oxide emissions. However, early mixing of fuel and oxidizer opens up the possibility of flame flashback into the premixing section upstream of the combustion chamber. Especially, for highly reactive fuels, boundary layer flashback (BLF) is a serious challenge. For high preheating and burner surface temperatures, boundary layer flashback limits for burner stabilized flames converge to those of so-called confined flames, where the flame is stabilized inside the burner duct. Hence, the prediction of confined flashback limits is a highly technically relevant task. In this study, a predictive model for flashback limits of confined flames is developed for premixed hydrogen–air mixtures. As shown in earlier studies, confined flashback is initiated by boundary layer separation upstream of the flame tip. Hence, the flashback limit can be predicted identifying the minimum pressure rise upstream of a confined flame causing boundary layer separation. For this purpose, the criterion of Stratford is chosen which was originally developed for boundary layer separation in mere aerodynamic phenomena. It is shown in this paper that it can also be applied to near-wall combustion processes if the pressure rise upstream of the flame tip is modeled correctly. In order to determine the pressure rise, an expression for the turbulent burning velocity is derived including the effects of flame stretch and turbulence. A comparison of the predicted flashback limits and experimental data shows high prediction accuracy and wide applicability of the developed model.

References

References
1.
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2013
, “
Experimental Investigation of the Flashback Limits and Flame Propagation Mechanism for Premixed Hydrogen-Air Flames in Non-Swirling and Swirling Flow
,”
ASME
Paper No. GT2013-94258.
2.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layer Studied by Long-Distance Micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.
3.
Fine
,
B.
,
1958
, “
The Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.
4.
Kithrin
,
J. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Tenth Symposium (International) on Combustion
.
5.
Lin
,
Y. C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME
Paper No. GTP-13-1215.
6.
Baumgartner
,
G.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2015
, “
Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed Micro-PIV and Micro-PLIF Combined With Chemiluminescence Imaging
,”
ASME
Paper No. GT2015-42605.
7.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.
8.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.
9.
Duan
,
Z.
,
Shaffer
,
B.
,
McDonell
,
V.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2013
, “
Influence of Burner Material, Tip Temperature and Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames
,”
ASME
Paper No. GTP-13-1230.
10.
Kurdymov
,
V.
,
Fernandéz-Tarrazo
,
E.
,
Truffaut
,
J. M.
,
Quinard
,
J.
,
Wangher
,
A.
, and
Searby
,
G.
,
2007
, “
Experimental and Numerical Study of Premixed Flame Flashback
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1275
1282
.
11.
Gruber
,
A.
,
Sankaran
,
R.
,
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2010
, “
Turbulent Flame-Wall Interaction: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
658
, pp.
5
32
.
12.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.
13.
Lietz
,
C.
,
Hassanaly
,
M.
, and
Raman
,
V.
,
2014
, “
Large Eddy Simulation of Premixed Flame Flashback in a Turbulent Channel
,”
AIAA
Paper No. AIAA 2014-0824.
14.
Baumgartner
,
G.
,
2014
, “
Flame Flashback in Premixed Hydrogen-Air Combustion Systems
,” Ph.D. thesis, Technische Universität München, Garching, Germany.
15.
Stratford
,
B. S.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
5
(
01
), pp.
1
16
.
16.
Cebeci
,
T.
,
Mosinskis
,
G. J.
, and
Smith
,
A. M. O.
,
1972
, “
Calculation of Separation Points in Incompressible Turbulent Flows
,”
J. Aircr.
,
9
(
9
), pp.
618
624
.
17.
Eichler
,
C.
,
2011
, “
Flame Flashback in Wall Boundary Layers of Premixed Combustion Systems
,” Ph.D. thesis, Technische Universität München, Garching, Germany.
18.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2015
, “
Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” http://www.cantera.org. Version 2.2, Cantera Developers.
19.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
20.
Boeck
,
L. R.
,
2015
, “
Deflagration-to-Detonation Transition and Detonation Propagation in H2–Air Mixtures With Transverse Concentration Gradients
,” Ph.D. thesis, Technische Universität München, Garching, Germany.
21.
Konnov
,
A. A.
,
2008
, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
,”
Combust. Flame
,
152
(
4
), pp.
507
528
.
22.
Dahoe
,
A. E.
,
2005
, “
Laminar Burning Velocities of Hydrogen–Air mixtures From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process Ind.
,
18
(
3
), pp.
152
166
.
23.
Markstein
,
G.
,
1964
,
Nonsteady Flame Propagation
,
Macmillan
, New York.
24.
Chen
,
Z.
,
2011
, “
On the Extraction of Laminar Flame Speed and Markstein Length from Outwardly Propagating Spherical Flames
,”
Combust. Flame
,
158
(
2
), pp.
291
300
.
25.
Sun
,
C. J.
,
Sung
,
C. J.
,
He
,
L.
, and
Law
,
C. K.
,
1999
, “
Dynamics of Weakly Stretched Flames: Quantitative Description and Extraction of Global Flame Parameters
,”
Combust. Flame
,
118
, pp.
108
128
.
26.
Bechtold
,
J. K.
, and
Matalon
,
M.
,
2001
, “
The Dependence of the Markstein Length on Stoichiometry
,”
Combust. Flame
,
127
, pp.
1906
1913
.
27.
Matalon
,
M.
, and
Matkowsky
,
B. J.
,
1982
, “
Flames as Gasdynamic Discontinuities
,”
J. Fluid Mech.
,
124
, pp.
239
259
.
28.
Mitani
,
T.
, and
Williams
,
F. A.
,
1980
, “
Studies of Cellular Flames in Hydrogen–Oxygen–Nitrogen Mixtures
,”
Combust. Flame
,
39
(
2
), pp.
169
190
.
29.
Brown
,
M. J.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1996
, “
Markstein Length of CO/H2/Air Flames, Using Expanding Spherical Flames
,”
Twenty-Sixth Symposium (International) on Combustion
.
30.
Dixon-Lewis
,
G.
,
1979
, “
Kinetic Mechanism, Structure and Properties of Premixed Flames in Hydrogen–Oxygen–Nitrogen Mixtures
,”
Philos. Trans. R. Soc. London
,
A292
, pp.
45
99
.
31.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
Edwards
, Philadelphia, PA.
32.
Chong
,
L. T. W.
,
Komarek
,
T.
,
Zellhuber
,
M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
the European Combustion Meeting
.
33.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamlets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.
34.
ANSYS
,
2014
, “
ANSYS Fluent User's Guide
,” ANSYS, Inc., Canonsburg, PA.
35.
Veynante
,
D.
,
Piana
,
J.
,
Duclos
,
J. M.
, and
Martel
,
C.
,
1996
, “
Experimental Analysis of Flame Surface Density Models for Premixed Turbulent Combustion
,”
Symposium (International) on Combustion
, Vol.
26
, pp.
413
420
.
36.
Bray
,
K. N. C.
,
1990
, “
Studies of the Turbulent Burning Velocity
,”
Proc. R. Soc. London A: Math. Phys. Eng. Sci.
,
431
(
1882
), pp.
315
335
.
37.
Peters
,
N.
,
2004
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
38.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
39.
Laufer
,
J.
,
1951
, “
Investigation of Turbulent Flow in A Two-Dimensional Channel
,” Technical Report, Report No. 1053, National Advisory Committee for Aeronautics, Washington, DC.
40.
von Elbe
,
G.
, and
Mentser
,
M.
,
1945
, “
Further Studies of the Structure and Stability of Burner Flames
,”
J. Chem. Phys.
,
13
(
2
), pp.
89
100
.
41.
Monty
,
J. P.
,
Hutchins
,
N.
,
Ng
,
H. C. H.
,
Marusic
,
I.
, and
Chong
,
M. S.
,
2009
, “
A Comparison of Turbulent Pipe, Channel and Boundary Layer Flows
,”
J. Fluid Mech.
,
632
, pp.
431
442
.
You do not currently have access to this content.