We present an application of a newly introduced method to analyze the time-resolved experimental data from the flow field of a swirl-stabilized combustor. This method is based on the classic proper orthogonal decomposition (POD) extended by a temporal constraint. The filter operation embedded in this method allows for continuous fading from the classic POD to the Fourier mode decomposition. This new method—called spectral proper orthogonal decomposition (SPOD)—allows for a clearer separation of the dominant mechanisms due to a clean spectral separation of phenomena. In this paper, the fundamentals of SPOD are shortly introduced. The actual focus is put on the application to a combustor flow. We analyze high-speed particle image velocimetry (PIV) measurements from flow fields in a combustor at different operation conditions. In these measurements, we consider externally actuated, as well as natural dynamics and reveal how the natural and actuated modes interact with each other. As shown in the paper, SPOD provides detailed insight into coherent structures in the swirl flames. Two distinct PVC structures are found that are very differently affected by acoustic actuation. The coherent structures are related to the heat release fluctuations, which are derived from simultaneously acquired OH* chemiluminescence measurements. Besides the actuated modes, a low frequency mode was found that significantly contribute to the global heat release fluctuations.

References

References
1.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1998
, “
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,”
Cambridge Monographs on Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
(
4
), pp.
265
292
.
3.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
4.
Rowley
,
C. W.
,
Mezic
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
5.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
6.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2015
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
(
4
), pp.
798
828
.
7.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.
8.
Willert
,
C.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
193
.
9.
Soria
,
J.
,
1996
, “
An Investigation of the Near Wake of a Circular Cylinder Using a Video-Based Digital Cross-Correlation Particle Image Velocimetry Technique
,”
Exp. Therm. Fluid Sci.
,
12
(
2
), pp.
221
233
.
10.
Huang
,
H. T.
,
Fiedler
,
H. E.
, and
Wang
,
J. J.
,
1993
, “
Limitation and Improvement of PIV: Part II: Particle Image Distortion, a Novel Technique
,”
Exp. Fluids
,
15
(
4–5
), pp.
263
273
.
11.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.
12.
Rukes
,
L.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2015
, “
Effect of Initial Vortex Core Size on the Coherent Structures in the Swirling Jet Near Field
,”
Exp. Fluids
,
56
(
10
), p.
197
.
13.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Murray
,
R. M.
,
2004
, “
Model Reduction for Compressible Flows Using POD and Galerkin Projection
,”
Phys. D: Nonlinear Phenom.
,
189
(
12
), pp.
115
129
.
14.
Boree
,
J.
,
2003
, “
Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows
,”
Exp. Fluids
,
35
(
2
), pp.
188
192
.
15.
Terhaar
,
S.
,
Reichel
,
T. G.
,
Schrödinger
,
C.
,
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2014
, “
Vortex Breakdown Types and Global Modes in Swirling Combustor Flows With Axial Injection
,”
J. Propul. Power
,
31
(
1
), pp.
219
229
.
16.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
17.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
(
12
), pp.
335
363
.
18.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.
You do not currently have access to this content.