Thermoacoustic instabilities have the potential to restrict the operability window of annular combustion systems, primarily as a result of azimuthal modes. Azimuthal acoustic modes are composed of counter-rotating wave pairs, which form traveling modes, standing modes, or combinations thereof. In this work, a monitoring strategy is proposed for annular combustors, which accounts for azimuthal mode shapes. Output-only modal identification has been adapted to retrieve azimuthal eigenmodes from surrogate data, resembling acoustic measurements on an industrial gas turbine. Online monitoring of decay rate estimates can serve as a thermoacoustic stability margin, while the recovered mode shapes contain information that can be useful for control strategies. A low-order thermoacoustic model is described, requiring multiple sensors around the circumference of the combustor annulus to assess the dynamics. This model leads to a second-order state-space representation with stochastic forcing, which is used as the model structure for the identification process. Four different identification approaches are evaluated under different assumptions, concerning noise characteristics and preprocessing of the signals. Additionally, recursive algorithms for online parameter identification are tested.

References

References
1.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.
2.
Nair
,
V.
,
Thampi
,
G.
,
Karuppusamy
,
S.
,
Gopalan
,
S.
, and
Sujith
,
R.
,
2013
, “
Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
273
290
.
3.
Nair
,
V.
, and
Sujith
,
R.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.
4.
Gotoda
,
H.
,
Shinoda
,
Y.
,
Kobayashi
,
M.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2014
, “
Detection and Control of Combustion Instability Based on the Concept of Dynamical System Theory
,”
Phys. Rev. E
,
89
(
2
), p.
022910
.
5.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT-2002-30064.
6.
Campa
,
G.
,
Camporeale
,
S.
,
Guaus
,
A.
,
Favier
,
J.
,
Bargiacchi
,
M.
,
Bottaro
,
A.
,
Cosatto
,
E.
, and
Mori
,
G.
,
2011
, “
A Quantitative Comparison Between a Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instabilities
,”
ASME
Paper No. GT2011-45969.
7.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.
8.
Morgans
,
A. S.
, and
Dowling
,
A. P.
,
2007
, “
Model-Based Control of Combustion Instabilities
,”
J. Sound Vib.
,
299
(
1–2
), pp.
261
282
.
9.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.
10.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
11.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.
12.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chamber
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
469
(
2151
), p.
20120535
.
13.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
, and
Bohn
,
D.
,
1999
, “
Prediction of Thermoacoustic Instabilities With Focus on the Dynamic Flame Behavior for the 3A-Series Gas Turbine of Siemens KWU
,”
ASME
Paper No. 99-GT-111.
14.
Blimbaum
,
J.
,
Zanchetta
,
M.
,
Akin
,
T.
,
Acharya
,
V.
,
O'Connor
,
J.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
,
2012
, “
Transverse to Longitudinal Acoustic Coupling Processes in Transversely Excited Flames
,”
Spring Technical Meeting of the Central States Section of the Combustion Institute
.
15.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.
16.
Ndiaye
,
A.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities on A Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133.
17.
Tanaka
,
H.
, and
Katayama
,
T.
,
2003
, “
Stochastic Subspace Identification Via ‘LQ Decomposition’
,”
IEEE
Conference on Decision and Control
, Dec. 9–12, Vol.
4
, pp.
3467
3472
.
18.
Katayama
,
T.
,
2005
,
Subspace Methods for System Identification. Communications and Control Engineering
,
Springer-Verlag
,
London
.
19.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2000
, “
Output-Only Modal Analysis by Frequency Domain Decomposition
,”
International Conference on Noise and Vibration Engineering
,
ISMA25
, Vol.
2
, pp.
717
723
.http://vbn.aau.dk/ws/files/203990123/Output_Only_Modal_Analysis_by_Frequency_Domain_Decomposition.pdf
You do not currently have access to this content.