The working environment of hot components is the most adverse of all gas turbine components. Malfunction of hot components is often followed by catastrophic consequences. Early fault detection plays a significant role in detecting performance deterioration immediately and reducing unscheduled maintenance. In this paper, an early fault detection method is introduced to detect early fault symptoms of hot components in gas turbines. The exhaust gas temperature (EGT) is usually used to monitor the performance of the hot components. The EGT is measured by several thermocouples distributed equally at the outlet of the gas turbine. EGT profile is symmetrical when the unit is in normal operation. And the faults of hot components lead to large temperature differences between different thermocouple readings. However, interferences can potentially affect temperature differences, and sometimes, especially in the early stages of the fault, its influence can be even higher than that of the faults. To improve the detection sensitivity, the influence of interferences must be eliminated. The two main interferences investigated in this study are associated with the operating and ambient conditions, and the structure deviation of different combustion chambers caused by processing and installation errors. Based on the basic principles of gas turbines and Fisher discriminant analysis (FDA), a new detection indicator is presented that characterizes the intrinsic structure information of the hot components. Using this new indicator, the interferences involving the certainty and the uncertainty are suppressed and the sensitivity of early fault detection in gas turbine hot components is improved. The robustness and the sensitivity of the proposed method are verified by actual data from a Taurus 70 gas turbine produced by Solar Turbines.

References

References
1.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.
2.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
,
2004
, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
,
79
(
1
), pp.
109
126
.
3.
Urban
,
L. A.
,
1973
, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,”
J. Aircr.
,
10
(
7
), pp.
400
406
.
4.
Pu
,
X.
,
Liu
,
S.
,
Jiang
,
H.
, and
Yu
,
D.
,
2013
, “
Sparse Bayesian Learning for Gas Path Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
7
), p.
071601
.
5.
Doel
,
D. L.
,
1994
, “
TEMPER—A Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
82
89
.
6.
Gulati
,
A.
,
Zedda
,
M.
, and
Singh
,
R.
,
2000
, “
Gas Turbine Engine and Sensor Multiple Operating Point Analysis Using Optimization Techniques
,”
AIAA
Paper No. 2000-3716.
7.
Kamboukos
,
P.
, and
Mathioudakis
,
K.
,
2005
, “
Comparison of Linear and Nonlinear Gas Turbine Performance Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
49
56
.
8.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
168
175
.
9.
Naderi
,
E.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2012
, “
Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
11602
.
10.
Kobayashi
,
T.
, and
Simon
,
D. L.
,
2005
, “
Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
497
504
.
11.
Loboda
,
I.
,
Feldshteyn
,
Y.
, and
Ponomaryov
,
V.
,
2012
, “
Neural Networks for Gas Turbine Fault Identification: Multilayer Perceptron or Radial Basis Network?
,”
Int. J. Turbo Jet-Engines
,
29
(
1
), pp.
37
48
.http://www.degruyter.com/view/j/tjj.2012.29.issue-1/tjj-2012-0005/tjj-2012-0005.xml
12.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part I: Neural Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
711
719
.
13.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2006
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
64
72
.
14.
Lee
,
Y. K.
,
Mavris
,
D. N.
,
Volovoi
,
V. V.
,
Yuan
,
M.
, and
Fisher
,
T.
,
2010
, “
A Fault Diagnosis Method for Industrial Gas Turbines Using Bayesian Data Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
41602
.
15.
Li
,
Y. G.
,
Ghafir
,
M. F. A.
,
Wang
,
L.
,
Singh
,
R.
,
Huang
,
K.
, and
Feng
,
X.
,
2011
, “
Nonlinear Multiple Points Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
71701
.
16.
Ganguli
,
R.
,
2003
, “
Application of Fuzzy Logic for Fault Isolation of Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
617
623
.
17.
Shabanian
,
M.
, and
Montazeri
,
M.
,
2011
, “
A Neuro-Fuzzy Online Fault Detection and Diagnosis Algorithm for Nonlinear and Dynamic Systems
,”
Int. J. Control Autom. Syst.
,
9
(
4
), pp.
665
670
.
18.
Martis
,
D.
,
2007
, “
Fuzzy Logic Estimation Applied to Newton Methods for Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
88
96
.
19.
Doel
,
D. L.
,
1990
, “
The Role for Expert Systems in Commercial Gas Turbine Engine Monitoring
,”
ASME
Paper No. 90-GT-374.
20.
Johnson
,
D.
,
Gilbert
,
K. E.
, and
Buckley
,
L. P.
,
1983
, “
The SPEEDTRONIC Mark IV Control™, a Distributed Fault Tolerant Gas Turbine Control System
,”
ASME
Paper No. 83-GT-106.
21.
Liu
,
J.
,
2014
, “
The Research for Exhaust Temperature Anomaly Detection in Gas Turbine
,” M.S. thesis, Harbin Institute of Technology, Harbin, China.
22.
Siemens Power Generation
,
1999
, “
TELEPERM XP The Process Control System for Economical Power Plant Control System Overview
,”
Siemens Power Generation
,
Berlin
.
23.
Gulen
,
S. C.
,
Griffin
,
P. R.
, and
Paolucci
,
S.
,
2002
, “
Real-Time On-Line Performance Diagnostics of Heavy-Duty Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
910
921
.
24.
Song
,
Y. X.
,
Zhang
,
K. X.
, and
Shi
,
Y. S.
,
2009
, “
Research on Aeroengine Performance Parameters Forecast Based on Multiple Linear Regression Forecasting Method
,”
J. Aerosp. Power
,
24
(
2
), pp.
427
431
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKDI200902029.htm
25.
Yılmaz
,
İ.
,
2009
, “
Evaluation of the Relationship Between Exhaust Gas Temperature and Operational Parameters in CFM56-7B Engines
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
4
), pp.
433
440
.
26.
Korczewski
,
Z.
,
2011
, “
Exhaust Gas Temperature Measurements in Diagnostic Examination of Naval Gas Turbine Engines
,”
Pol. Marit. Res.
,
18
(
2
), pp.
37
43
.http://www.degruyter.com/view/j/pomr.2011.18.issue-2/v10012-011-0010-2/v10012-011-0010-2.xml
27.
Tarassenko
,
L.
,
Nairac
,
A.
,
Townsend
,
N.
,
Buxton
,
I.
, and
Cowley
,
Z.
,
2000
, “
Novelty Detection for the Identification of Abnormalities
,”
Int. J. Syst. Sci.
,
31
(
11
), pp.
1427
1439
.
28.
Medina
,
P.
,
Saez
,
D.
, and
Roman
,
R.
,
2008
, “
On Line Fault Detection and Isolation in Gas Turbine Combustion Chambers
,”
ASME
Paper No. GT2008-51316.
29.
Basseville
,
M.
,
Benveniste
,
A.
,
Mathis
,
G.
, and
Zhang
,
Q.
,
1994
, “
Monitoring the Combustion Set of a Gas Turbine
,” IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes—
SAFEPROCESS
, Vol. 94, pp.
397
402
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.2107&rep=rep1&type=pdf
30.
Webb
,
A. R.
, and
Copsey
,
K. D.
,
1990
,
Introduction to Statistical Pattern Recognition
,
Wiley
,
New York
.
31.
Duda
,
R. O.
,
Hart
,
P. E.
,
Stork
,
D. G.
,
Duda
,
C. R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2001
,
Pattern Classification
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.