This paper presents a well-researched subject area within academia, with a high degree of application in the industry. Compressor fouling effect is one of the commonest degradations associated with gas turbine operations. The aim of this review is to broadly communicate some of the current knowledge while identifying some gaps in understanding, in an effort to present some industry/operational interest for academic research. Likewise, highlight some studies from academia that present the current state of research, with their corresponding methods (experimental, numerical, actual operations, and analytical methods). The merits and limitations of the individual method and their approaches are discussed, thereby providing industry practitioners with a view to appreciating academic research outputs. The review shows opportunities for improving compressor washing effectiveness through computational fluid dynamics (CFD). This is presented in the form of addressing the factors influencing compressor washing efficiency. Pertinent questions from academic research and operational experiences are posed, on the basis of this review.

References

References
1.
Weg
,
2014
, “
Hot Mission for a Generator: Autonomous Electricity Generation in the Desert
,” WEG, Huehuetoca, Mexico, accessed Jan. 21, 2017, http://old.weg.net/mx/Media-Center/Noticias/Productos-y-Soluciones/Hot-mission-for-a-generator-autonomous-electricity-generation-in-the-desert
2.
Overton
,
T. W.
,
2014
, “
CPV Sentinel Energy Project
,” Power, Desert Hot Springs, CA, accessed Jan. 21, 2017, http://www.powermag.com/cpv-sentinel-energy-project-desert-hot-springs-california/
3.
Alpert
,
P.
,
Kishcha
,
P.
,
Shtivelman
,
A.
,
Krichak
,
S. O.
, and
Joseph
,
J. H.
,
2004
, “
Vertical Distribution of Saharan Dust Based on 2.5-Year Model Predictions
,”
Atmos. Res.
,
70
(
2
), pp.
109
130
.
4.
Google Maps
,
2017
, “
Satellite View of Queen Alia International Airport
,” Google Inc., Mountain View, CA, accessed May, 9, 2017, https://www.google.co.uk/maps/@31.7256645,35.9955731,8629m/data=!3m1!1e3
5.
Google Maps
,
2017
, “
Satellite View of Hong Kong International Airport
,” Google Inc., Mountain View, CA, accessed May, 9, 2017, https://www.google.co.uk/maps/@22.2999522,113.9190065,9386m/data=!3m1!1e3
6.
Khanna
,
A. S.
,
2016
,
High Temperature Corrosion
,
World Scientific Publishing
,
Hackensack, NJ
.
7.
Igie
,
U.
,
Goiricelaya
,
M.
,
Nalianda
,
D.
, and
Minervino
,
O.
,
2016
, “
Aero Engine Compressor Fouling Effects for Short- and Long-Haul Missions
,”
Proc. Inst. Mech. Eng. Part G
,
230
(
7
), pp.
1312
1324
.
8.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
9.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
10.
Giesecke
,
D.
,
Igie
,
U.
,
Pilidis
,
P.
,
Ramsden
,
K.
, and
Lambart
,
P.
,
2012
, “
Performance and Techno-Economic Investigation of On-Wing Compressor Wash for a Short-Range Aero Engine
,”
ASME
Paper No. GT2012-68995.
11.
Döring
,
F.
,
Staudacher
,
S.
,
Koch
,
C.
, and
Weißschuh
,
M.
,
2016
, “
Modeling Particle Deposition Effects in Aircraft Engine Compressors
,”
ASME J. Turbomach.
,
139
(
5
), p.
051003
.
12.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2016
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.
13.
Lockheed
,
1986
, “
Engine Compressor Washing
,”
Service News
,
13
(
4
), p.
3
.
14.
Rolls-Royce
,
2017
, “
Engine Health Management
,” Rolls-Royce, Westhampnett, UK, accessed Jan. 29, 2017, http://www.rolls-royce.com/about/our-technology/enabling-technologies/engine-health-management.aspx
15.
Igie
,
U.
,
Diez-Gonzalez
,
P.
,
Giraud
,
A.
, and
Minervino
,
O.
,
2016
, “
Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122601
.
16.
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Alexiou
,
A.
,
Romesis
,
C.
, and
Mathioudakis
,
K.
,
2014
, “
Turbofan Engine Health Assessment From Flight Data
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041203
.
17.
Gordon
,
R.
,
2010
, “
The Evolution of Gas Turbine Compressor Cleaning
,”
IDGTE J. Power Eng.
,
14
(3), pp. 5–10.
18.
Boyce
,
M.
, and
Gonzalez
,
F.
,
2005
, “
A Study of On-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.
19.
Boyce
,
M.
, and
Latcovich
,
J.
,
2002
, “
Condition Monitoring and Its Effects on the Life of New Advanced Gas Turbines
,”
ASME-IGTI Global Gas Turbine News
,
42
(
3
), p.
32
.
20.
Thames
,
J. M.
,
Stegmaier
,
J. W.
, and
Ford
,
J. J.
,
1989
, “
On-Line Compressor Washing Practices and Benefits
,”
ASME
Paper No. 89-GT-91.
21.
Gera
,
M.
,
2010
, “
Advanced Compressor Cleaning System for Siemens Gas Turbines
,” Siemens AG, Munich, Germany, accessed Jan. 29, 2017, http://m.energy.siemens.com/hq/pool/hq/energy-topics/technical-papers/Advanced_Compressor_Cleaning_for_Gas_Turbines.pdf
22.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2006
, “
Water Injection Effects on Compressor Stage Operation
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
778
784
.
23.
ZOK
,
2017
, “
What Can Be Used to the Wash the Compressor?
,” ZOK International, West Sussex, UK, accessed Jan. 29, 2017, https://www.zok.com/faq/what_can_be_used_to_the_wash_the_compressor/
24.
Syverud
,
E.
, and
Bakken
,
L.
,
2007
, “
Online Water Wash Tests of GE J85-13
,”
ASME J. Turbomach.
,
129
(
1
), pp.
136
142
.
25.
Igie
,
U.
,
Pilidis
,
P.
,
Fouflias
,
D.
,
Ramsden
,
K.
, and
Laskaridis
,
P.
,
2014
, “
Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing
,”
ASME J. Turbomach.
,
136
(
10
), p.
101001
.
26.
Rocchi
,
M.
,
2007
, “
CFD Aerodynamic Investigation of On-Line Compressor Washing Operations
,” Master's thesis, Cranfield University, Cranfield, UK.
27.
Bromley
,
A. F.
, and
Meher-Homji
,
C. B.
,
2004
, “
Gain a Competitive Edge With a Better Understanding of GT Compressor Fouling, Washing
,”
Comb. Cycle J., Fourth Quarter
, pp.
37
41
.http://www.turbotect.ru/website/turbotect/upload/custom/files/lib/CC-Article-Combined-Cycle-Journal-2004.pdf
28.
DrDust
,
2004
, “
Spray Nozzles
,” National Environmental Service Company, Mendham, NJ, accessed May, 9, 2017, http://www.drdust.com/spray_nozzles.htm
29.
Noznet
,
2011
, “
Broadening the Knowledge Base: Nozzle Performance
,” Nozzle Network Co., Ltd., Tamba, Japan, accessed May, 9. 2017, http://www.nozzle-network.com/knowledge/know_practical_7.html
30.
Agbadede
,
R.
,
Pilidis
,
P.
,
Igie
,
U. L.
, and
Allison
,
I.
,
2015
, “
Experimental and Theoretical Investigation of the Influence of Liquid Droplet Size on Effectiveness of Online Compressor Cleaning for Industrial Gas Turbines
,”
J. Energy Inst.
,
88
(
4
), pp.
414
424
.
31.
Fouflias
,
D.
,
2009
, “
An Experimental and Computational Analysis of Compressor Cascades With Varying Surface Roughness
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/7029
32.
Brun
,
K.
,
Foiles
,
W. C.
,
Grimley
,
T. A.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042605
.
33.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
34.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
35.
Fouflias
,
D.
,
Gannan
,
A.
,
Ramsden
,
K.
,
Pilidis
,
P.
,
Mba
,
D.
,
Teixeira
,
J.
,
Igie
,
U.
, and
Lambart
,
P.
,
2010
, “
Experimental Investigation of the Influence of Fouling on Compressor Cascade Characteristics and Implications for Gas Turbine Engine Performance
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
7
), p.
1007
.
36.
Tabakoff, W.
, and
Balan, C.
, 1982, “
Compressor Cascade Performance Deterioration Caused by Sand Ingestion
,” University of Cincinnati, Cincinnati, OH, NASA Technical Report No.
NASA-CR-168067
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830008015.pdf
37.
Vigueras-Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing On-Line
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/2448
38.
Igie
,
U.
,
Pilidis
,
P.
,
Fouflias
,
D.
,
Ramsden
,
K.
, and
Lambart
,
P.
,
2011
, “
A Method to Determine the Effectiveness of Detergents for Gas Turbine On-Line Compressor Washing
,”
The 20th International Symposium on Air Breathing Engines
(ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE-2011-1204.
39.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Estimation of the Particle Deposition on A Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012604
.
40.
Saxena
,
S.
,
Jothiprasad
,
G.
,
Bourassa
,
C.
, and
Pritchard
,
B.
,
2016
, “
Numerical Simulation of Particulates in Multi-Stage Axial Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031013
.
41.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2016
, “
An Energy Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
42.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
43.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2009
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.
44.
Bouris
,
D.
,
Kubo
,
R.
,
Hirata
,
H.
, and
Nakata
,
Y.
,
2002
, “
Numerical Comparative Study of Compressor Rotor and Stator Blade Deposition Rates
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
608
616
.
45.
Sauniere
,
H.
,
2011
, “
Mechanisms of Fouling on a Numerical Single Stage Compressor Model
,” Master's thesis, Cranfield University, Cranfield, UK.
46.
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092002
.
47.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
An Innovative Method for the Evaluation of Particle Deposition Accounting for Rotor/Stator Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052401
.
48.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012604
.
49.
El-Batsh
,
H.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,”
Ph.D. thesis
, Vienna University of Technology, Wien, Austria.https://www.researchgate.net/publication/242189174_MODELING_PARTICLE_DEPOSITION_ON_COMPRESSOR_AND_TURBINE_BLADE_SURFACES
50.
Schneider
,
E.
,
Demircioglu Bussjaeger
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2009
, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
062001
.
51.
Leusden
,
C. P.
,
Sorgenfrey
,
C.
, and
Dümmel
,
L.
,
2004
, “
Performance Benefits Using Siemens Advanced Compressor Cleaning System
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
763
769
.
52.
Kurz
,
R.
, and
Brun
,
K.
,
2000
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
53.
Mohammadi
,
E.
, and
Montazeri-Gh
,
M.
,
2014
, “
Simulation of Full and Part-Load Performance Deterioration of Industrial Two-Shaft Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092602
.
54.
Seddigh
,
F.
, and
Saravanamuttoo
,
H. I. H.
,
1991
, “
A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
595
601
.
55.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
20
(
2
), pp.
256
261
.
56.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility, and Sensitivity
,”
ASME
Paper No. GT2009-59239.
57.
Zaba
,
T.
,
1980
, “
Losses in Gas Turbine Due to Deposits on the Blading
,”
Brown Boveri Rev.
,
67
(
12
), pp.
715
722
.
58.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
343
350
.
59.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. Inst. Mech. Eng. Part J
,
216
(
5
), pp.
363
377
.
60.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
,
2004
, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
,
79
(
1
), pp.
109
126
.
61.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
.
62.
Zwebek
,
A. I.
, and
Pilidis
,
P.
,
2003
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part I: Gas Turbine Cycle Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
651
657
.
63.
Zwebek
,
A. I.
, and
Pilidis
,
P.
,
2003
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part II: Steam Turbine Cycle Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
658
663
.
64.
Zwebek
,
A. I.
, and
Pilidis
,
P.
,
2004
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
306
315
.
You do not currently have access to this content.